a) Để giải phương trình cot(12x + π/4) = -1, ta áp dụng tính chất của hàm cơ-tang:
cot(12x + π/4) = -1 => 12x + π/4 = π + nπ (với n là số nguyên) => 12x = 3π/4 + nπ - π/4 => 12x = 2π/4 + nπ => 12x = π/2 + nπ => x = (π/2 + nπ)/12 (với n là số nguyên)
b) Để giải phương trình cot(4x) = 1/√3, ta áp dụng tính chất của hàm cơ-tang:
cot(4x) = 1/√3 => 4x = π/6 + nπ (với n là số nguyên) => x = (π/6 + nπ)/4 (với n là số nguyên)
c) Để giải phương trình cot(x + 15 độ) = cot(60 độ), ta áp dụng tính chất của hàm cơ-tang:
cot(x + 15 độ) = cot(60 độ) => x + 15 độ = 60 độ + n180 độ (với n là số nguyên) => x = 45 độ + n180 độ (với n là số nguyên)
d) Để giải phương trình cot(30 độ - 2x) = cot(10 độ), ta áp dụng tính chất của hàm cơ-tang:
cot(30 độ - 2x) = cot(10 độ) => 30 độ - 2x = 10 độ + n180 độ (với n là số nguyên) => -2x = -20 độ + n180 độ => x = 10 độ - n90 độ (với n là số nguyên)
a: cot(1/2x+pi/4)=-1
=>cot(1/2x+pi/4)=cot(-pi/4)
=>1/2x+pi/4=-pi/4+kpi
=>1/2x=-pi/2+kpi
=>x=-pi+k2pi
b: cot 4x=1/căn 3
=>4x=pi/3+kpi
=>x=pi/12+kpi/4
c: cot(x+15 độ)=cot 60 độ
=>x+15 độ=60 độ+k*180 độ
=>x=45 độ+k*180 độ
d: cot(30 độ-2x)=cot 10 độ
=>30 độ-2x=10 độ+k*180 độ
=>2x=20 độ-k*180 độ
=>x=10 độ-k*90 độ