Lời giải:
Áp dụng BĐT AM-GM ta có:
\(4x^2+4y^2\geq 2\sqrt{16x^2y^2}=8xy\)
\(32x^2+\frac{z^2}{2}\geq 2\sqrt{16x^2z^2}=8xz\)
\(32y^2+\frac{z^2}{2}\geq 2\sqrt{16y^2z^2}=8yz\)
Cộng theo vế thu được:
\(36x^2+36y^2+z^2\geq 8(xy+yz+xz)\)
\(\Leftrightarrow A\geq 8(xy+yz+xz)=8\)
Vậy \(A_{\min}=8\). Dấu bằng xảy ra khi \(x=y=\sqrt{\frac{1}{17}}; z=\frac{8}{\sqrt{17}}\)