\(VT\ge3\sqrt[3]{\dfrac{x^3y^3z^3\left(x+y\right)\left(y+z\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}}=3xyz\) (dpcm)
\(VT\ge3\sqrt[3]{\dfrac{x^3y^3z^3\left(x+y\right)\left(y+z\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}}=3xyz\) (dpcm)
cho các số thực dương x,y,z. chứng minh rằng:
\(\frac{xy^2\left(x+z\right)}{x+y}+\frac{yz^2\left(z+x\right)}{y+z}+\frac{zx^2\left(x+y\right)}{z+x}\ge3xyz\)
cho x,y,z>0 và x+y+z=\(\dfrac{3}{2}\)
tìm Min \(P=\dfrac{\sqrt{x^2+xy+y^2}}{\left(x+y\right)^2+1}+\dfrac{\sqrt{y^2+yz+z^2}}{\left(y+z\right)^2+1}+\dfrac{\sqrt{z^2+zx+x^2}}{\left(z+x\right)^2+1}\)
cho a b c là 3 số thực dương
chưng minh: \(\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}+\dfrac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\dfrac{3}{4}\)
cho các số thực dương x,y,z. Chứng minh rằng \(\frac{x^2y\left(y-z\right)}{x+y}+\frac{y^2z\left(z-x\right)}{y+z}+\frac{z^2x\left(x-y\right)}{z+x}\ge0\)
cho các số thực dương x,y,z. Chứng minh rằng \(\frac{x^2y\left(y-z\right)}{x+y}+\frac{y^2z\left(z-x\right)}{y+z}+\frac{z^2x\left(x-y\right)}{z+x}\ge0\)
x ; y ; z \(\ge0\) ; x + y + z = 4 . Tìm Max P = \(x^3+y^3+z^3+8\left(xy^2+yz^2+zx^2\right)\)
cho x,y,z thuc duong thoa man \(\left\{{}\begin{matrix}\left|x-2y\right|\le\dfrac{1}{\sqrt{x}}\\\left|y-2x\right|\le\dfrac{1}{\sqrt{y}}\end{matrix}\right.\)
tim Max\(A=x^2+2y\)
cho các số thực x,y,z thỏa mãn x,y,z\(\ge\)1 và \(3\left(x+y+z\right)=x^2+y^2+z^2+2xy\)
Tìm giá trị nhỏ nhất của biểu thức: P=\(\frac{x^2}{\left(x+y\right)^2+x}+\frac{x}{z^2+x}\)
1) biết các nghiệm của phương trình \(cos2x=-\dfrac{1}{2}\) có dạng \(x=\dfrac{\pi}{m}+k\pi,k\in Z\) với m,n là các số nguyên dương. Khi đó m+n bằng
2) cho \(x=\dfrac{\pi}{3}+k2\pi\left(k\in Z\right)\) là nghiệm của phương trình
3) cho \(x=\dfrac{\pi}{2}+k\pi\left(k\in Z\right)\) là nghiệm của phương trình