Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
lienminhht

cho a b c là 3 số thực dương

chưng minh: \(\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}+\dfrac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\dfrac{3}{4}\)

missing you =
27 tháng 1 2022 lúc 12:52

\(\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{1+y}{8}+\dfrac{1+z}{8}\ge3\sqrt[3]{\dfrac{x^3\left(1+y\right)\left(1+z\right)}{\left(1+y\right)\left(1+z\right).64}}=\dfrac{3x}{4}\)

\(\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}+\dfrac{1+z}{8}+\dfrac{1+x}{8}\ge\dfrac{3y}{4}\)

\(\dfrac{z^3}{\left(1+x\right)\left(1+y\right)}+\dfrac{1+x}{8}+\dfrac{1+y}{8}\ge\dfrac{3z}{4}\)

\(\Rightarrow\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}+\dfrac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\dfrac{x+y+z}{2}-\dfrac{3}{4}\ge\dfrac{3\sqrt[3]{xyz}}{2}-\dfrac{3}{4}=\dfrac{3}{2}-\dfrac{3}{4}=\dfrac{3}{4}\left(đpcm\right)\)

(bài này chắc thiếu đk xyz=1 ?nên mình bổ sung xyz=1)

oki pạn
27 tháng 1 2022 lúc 13:06

( xyz=3)

Áp dụng BDDT AM-GM:

Ta có: \(\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{1+y}{8}+\dfrac{1+z}{8}\ge3\sqrt[3]{\dfrac{x^3\left(1+y\right)\left(1+z\right)}{\left(1+y\right)\left(1+z\right).8.8}}=3\sqrt[3]{\dfrac{x^3}{64}}=\dfrac{3x}{4}\)

Chứng minh tương tự ta có:

\(\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}+\dfrac{1+z}{8}+\dfrac{1+x}{8}\ge\dfrac{3y}{4}\)

\(\dfrac{z^3}{\left(1+x\right)\left(1+y\right)}+\dfrac{1+x}{8}+\dfrac{1+y}{8}\ge\dfrac{3z}{4}\)

Cộng từng vế ta được:

\(\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{y^3}{\left(1+x\right)\left(1+z\right)}+\dfrac{z^3}{\left(1+x\right)\left(1+y\right)}+\dfrac{3+x+y+z}{4}\ge\dfrac{3\left(x+y+z\right)}{4}\)

\(\Leftrightarrow\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{y^3}{\left(1+x\right)\left(1+z\right)}+\dfrac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\dfrac{3x+3y+3z-3-x-y-z}{4}=\dfrac{2\left(x+y+z\right)-3}{4}\)

\(\Leftrightarrow\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{y^3}{\left(1+x\right)\left(1+z\right)}+\dfrac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\dfrac{2.\sqrt[3]{xyz}-3}{4}=\dfrac{2.3-3}{4}=\dfrac{3}{4}\left(đfcm\right)\)


Các câu hỏi tương tự
đấng ys
Xem chi tiết
Nguyễn Văn Đình Lâm
Xem chi tiết
NGUYỄN MINH HUY
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
đấng ys
Xem chi tiết
đấng ys
Xem chi tiết
títtt
Xem chi tiết
Lê Song Phương
Xem chi tiết