cho x,y,z là các số thực dương tm \(3xyz\ge x+y+z\)
tìm min của P= \(\frac{xy+yz+xz-1}{\sqrt{3x^2+1}+\sqrt{3y^2+1}+\sqrt{3z^2+1}}\)
1. Cho \(x,y,z>0\), \(x+y\le1\) và \(xyz=1\). Tìm GTLN của biểu thức \(P=\dfrac{1}{1+4x^2}+\dfrac{1}{1+4y^2}-\sqrt{z+1}\)
2. Cho \(x,y,z>0\), \(xyz=x+y+z\). Tìm GTNN của biểu thức \(P=xy+yz+zx-\sqrt{1+x^2}-\sqrt{1+y^2}-\sqrt{1+z^2}\) (dùng phương pháp lượng giác hóa)
Cho 0≤x,y,z≤1
Tìm max \(D=\sqrt{\dfrac{x}{1+yz}}+\sqrt{\dfrac{y}{1+zx}}+\dfrac{z}{2+2xy}\)
Cho x,y,z>0
\(CM:\sqrt{\dfrac{x}{z+3x}}+\sqrt{\dfrac{y}{x+3y}}+\sqrt{\dfrac{z}{y+3z}}\le\dfrac{3}{2}\)
+) Tìm min
\(E=\dfrac{1+\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{xy+yz+zx}\)
+) Tìm max và min
\(F=\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\)
Trong đó a,b,c>0 và \(min\left\{a,b,c\right\}\ge\dfrac{1}{4}max\left\{a,b,c\right\}\)
Cho x, y, z là các số thực dương thoả mãn xyz=1. Tìm GTNN của P = \(\frac{x^3+1}{\sqrt{x^4+y+z}}+\frac{y^3+1}{\sqrt{y^4+z+x}}+\frac{z^3+1}{\sqrt{z^4+x+y}}-\frac{8\left(xy+yz+zx\right)}{xy+yz+zx+1}\)
1. a,b,c>0 và a+b+c=2017
\(CM:\Sigma\dfrac{2017a-a^2}{bc}\ge\sqrt{2}\left(\Sigma\sqrt{\dfrac{2017-a}{a}}\right)\)
2. cho x,y,z tm: \(x^2+y^2+z^2=3\)
\(CM:8\left(2-x\right)\left(2-y\right)\left(2-z\right)\ge\left(x+yz\right)\left(y+zx\right)\left(z+xy\right)\)
3. a,b,c>0 và \(a^2+b^2+c^2\ge6\)
\(CM:\Sigma\dfrac{1}{1+ab}\ge\dfrac{3}{2}\)
1.Giải hệ phương trình: \(\hept{\begin{cases}\left(x+\sqrt{x^2+1}\right)\left(\sqrt{y^2+1}-y\right)=1\\3\sqrt{x+2y-2}+x\sqrt{x-2y+6}=10\end{cases}.}\)
2.cho các số thực không âm x,y,z thỏa mãn: \(x^3+y^3+z^3=3\)
Tìm Min \(P=\frac{xyz+\left(x+y+z\right)^2}{xy+yz+xz}-\frac{1}{xy+yz+xz+1}\)
Cho 3 số thực dương \(x,y,z\) thỏa mãn \(x+y+z=3\). Tìm GTLN của biểu thức \(P=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)
cho x,y,z là các số thực dương thỏa mãn\(xy+yz+zx=1\). Chứng minh rằng \(\text{x/căn(1+x^2)+y/căn(1+y^2)+z/căn(1+z^2)+1/x^2+1/y^2+1/z^2>=21/2}\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge\frac{21}{2}\)
\(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge\frac{21}{2}\)