Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hi Mn

Cho 0≤x,y,z≤1

Tìm max \(D=\sqrt{\dfrac{x}{1+yz}}+\sqrt{\dfrac{y}{1+zx}}+\dfrac{z}{2+2xy}\)

Nguyễn Việt Lâm
8 tháng 1 2023 lúc 13:05

\(D\le\dfrac{1}{2}\left(1+\dfrac{x}{1+yz}\right)+\dfrac{1}{2}\left(1+\dfrac{y}{1+zx}\right)+\dfrac{z}{2+2xy}\)

\(=1+\dfrac{x}{2\left(1+yz\right)}+\dfrac{y}{2\left(1+zx\right)}+\dfrac{z}{2\left(1+xy\right)}\)

Do \(0\le x;y;z\le1\)

\(\Rightarrow\left(1-x\right)\left(1-y\right)\ge0\Leftrightarrow xy+1\ge x+y\)

\(\Leftrightarrow2\left(xy+1\right)\ge xy+1+x+y\ge x+y+z\)

\(\Rightarrow\dfrac{z}{2\left(1+xy\right)}\le\dfrac{z}{x+y+z}\)

Tương tự: \(\dfrac{x}{2\left(1+yz\right)}\le\dfrac{x}{x+y+z}\) ; \(\dfrac{y}{2\left(1+zx\right)}\le\dfrac{y}{x+y+z}\)

Cộng vế:

\(P\le1+\dfrac{x}{x+y+z}+\dfrac{y}{x+y+z}+\dfrac{z}{x+y+z}=2\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(1;1;0\right)\)

Nguyễn Việt Lâm
8 tháng 1 2023 lúc 13:40

\(a+b+c+2=abc\)

\(\Leftrightarrow abc+ab+bc+ca+a+b+c+1=ab+bc+ca+2\left(a+b+c\right)+3\)

\(\Leftrightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(a+1\right)\left(b+1\right)+\left(b+1\right)\left(c+1\right)+\left(c+1\right)\left(a+1\right)\)

\(\Leftrightarrow\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}=1\)

Ta có:

\(a^2+a^2+4\ge\dfrac{1}{3}\left(a+a+2\right)^2=\dfrac{4}{3}\left(a+1\right)^2\)

\(\Rightarrow\sum\dfrac{a+1}{a^2+2}\le\dfrac{3}{2}\sum\dfrac{a+1}{\left(a+1\right)^2}=\dfrac{3}{2}\sum\dfrac{1}{a+1}=\dfrac{3}{2}\)