Ta có: \(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\)
\(\Leftrightarrow a^2-\left(b+c\right)^2=a^2-\left(b-c\right)^2\)
\(\Leftrightarrow\left(b+c\right)^2-\left(b-c\right)^2=0\)
\(\Leftrightarrow-4bc=0\)
hay c=0
Ta có: \(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\)
\(\Leftrightarrow a^2-\left(b+c\right)^2=a^2-\left(b-c\right)^2\)
\(\Leftrightarrow\left(b+c\right)^2-\left(b-c\right)^2=0\)
\(\Leftrightarrow-4bc=0\)
hay c=0
Cho a,b,c là các số hữu ti khác 0 thỏa mãn a+b+c=0.Chứng minh rằng: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\) là bình phương của một số hữu tỉ
với a>0; b>0; c>0, chứng minh rằng:
\(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\)≥ a+b+c
CẦN GẤP Ạ!
cho a,b,c >0 thỏa a≥b≥c. Chứng minh rằng \(\dfrac{a}{b}\)+\(\dfrac{b}{c}\)+\(\dfrac{c}{a}\)≥3
Cho tỉ lệ thức: \(\dfrac{a}{b}=\dfrac{c}{d}\left(a,b,c,d\ne0\right)\)
Chứng minh:
1) \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
2) \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)
Cho a,b,c>0 và a+b+c=2. Chứng minh rằng: \(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\ge1\)
Cho a,b,c>0. Chứng minh rằng: \(\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}\ge3\)
Cho \(\dfrac{a+b}{b+c}\)=\(\dfrac{c+d}{d+a}\) Chứng minh rằng a=c hoặc a+b+c+d=0
cho a,b,c là các số thực thỏa man: a+\(\dfrac{1}{b}=b+\dfrac{1}{c}=c+\dfrac{1}{a\backslash}\).
a) chứng minh nếu a,b,c đôi một khác nhau thì a2b2c2=1
b) chứng minh rằng nếu a,b,c>0 thì a=b=c
Chứng minh rằng \(\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ab}\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)vớia,b,c>0\)
Giups mình với !!!!!!!!!!!!!!!!!!!!!!