a: Xét tứ giác IHDE có \(\widehat{IHD}=\widehat{HIE}=\widehat{HDE}=90^0\)
nên IHDE là hình chữ nhật
a: Xét tứ giác IHDE có \(\widehat{IHD}=\widehat{HIE}=\widehat{HDE}=90^0\)
nên IHDE là hình chữ nhật
18. cho ΔABC vuông tại A (AB<AC), vẽ đường cao AH. Trên tia HC lấy điểm D sao cho HD=AH. đường thẳng ⊥BC tại D cắt AC tại E. gọi M là trung điểm của BE, AM cắt BC tại G, Kẻ EI⊥AH
a, cm HDEI là hình chữ nhật
b, cm AE=AB
c, cm GB.AC=GC.AE
1. Cho tam giác ABC vuông tại A (AC>AB) đường cao AH (H thuộc BC) trên tia HC lấy D sao cho HD = HA . đường vuông góc với BC tại D cắt AC tại E, tia AM cắt BC tại G .Chứng minh GB/BC = HD/ AH+HC (/ là phân số).
2. Cho hình vuông ABCD có cạnh bằng a. Gọi E, F lần lượt là trung điểm của các cạnh AB, BC, M là giao điểm CE và DF. Tính diện tích tam giác MDC theo a
3. Hình thang ABCD có AB//CD, đường cao bằng 12m, AC vuông góc BD, BD = 15m.
a) Qua B kẻ đường thẳng song song với AC, cắt DC ở E. Chứng minh BD2 = DE*DH. Từ đó tính DE.
b. Tính SABCD?
Cho tam giác ABC vuông tại A ( AB < AC ). Gọi D, E, F lần lượt là trung điểm của BC, AB, AC
a) CM: AEDF là hình chữ nhật
b) Đường thẳng kẻ từ E và song song với BF cắt đường thẳng DF tại N. CM: ANCD là hình thoi
c) Gọi O là giao điểm của AD và EF. CM: B, O, M thẳng hàng
d) Trên tia DN lấy điểm M sao cho N là trung điểm của FM. Qua N kẻ đường thẳng vuông góc với AB cắt MC tại K. CM: B, F, K thẳng hàng
MỌI NGƯỜI GIÚP ĐỠ MÌNH NHÉ!
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR: góc EMD = 3 góc AEM
Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC
b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.
Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông
Cho tam giác ABC vuông tại A đường cao AH. Gọi E,F lần lượt là chân đường vuông góc kẻ đến AB, AC
a, cm tứ giác EAFH là hình gì
b, qua A kẻ đường thẳng vuông góc với EF cắt BC ở I. cm I là trung điểm BC
Cho tam giác ABC vuông tại A . Kẻ đường cao AH , qua H vẽ đường thẳng vuông góc với AB cắt AB tại K và lấy trên đường thẳng đó điểm D sao cho K là trung điểm của HD . Qua H vẽ đường thẳng vuông góc với AC cắt AC tại L và lấy trên đường thẳng đó điểm E sao cho L là trung điểm của HE .
Chứng minh :
a) Ba điểm A, D , E thẳng hàng .
b) Tứ giác BCDE là hình thang vuông .
c) BD + CE = BC.
Mọi người giúp mình với, mình đang cần gấp
1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D;
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE.
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng
5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF
Cho tam giác ABC vuông tại A( AC > AB), đường cao AH( H thuộc BC). Trên tia đối của tia HB lấy điểm D sao cho HD=HA. Qua D kẻ đường thẳng vuông góc với BC cắt AC tại E.
1. Chứng minh CD.CB=CA.CE
2. tính số đo góc BEC
3. gọi M là trung điểm của đoạn BE. Tia AM cắt BC tại G.Chứng minh; GB/BC=HD/AH+HC