a: \(BC=\sqrt{AB^2+AC^2}=50\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{30\cdot40}{50}=24\left(cm\right)\)
b: \(BH=\dfrac{AB^2}{BC}=\dfrac{30^2}{50}=18\left(cm\right)\)
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên AM=MC=MB=BC/2=25(cm)
c: \(\sin C=\dfrac{AB}{BC}=\dfrac{3}{5}\)
\(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\)