Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Gia Hân

Cho tam giác ABC vuông tại A (AB < AC), đường cao AH, gọi M là trung điểm của AB. Trên tia đối của tia MH lấy điểm D sao cho MD = MH. a) Chứng minh : tứ giác AHBD là hình chữ nhật. b) Gọi E là điểm đối xứng của B qua điểm H. Chứng minh tứ giác ADHE là hình bình hành. c)Gọi N là giao điểm của AH và DE,K là trung điểm AC.Chứng minh MN//BC và 3 điểm M,N,K thẳng hàng

Nguyễn Hoàng Minh
22 tháng 12 2021 lúc 7:22

\(a,\) Vì M là trung điểm AB cà DH nên AHBD là hình bình hành

Mà \(\widehat{AHB}=90^0\) (đường cao AH) nên AHBD là hcn

\(b,\) Vì AHBD là hcn nên \(AD=BH;AD\text{//}HB\)

Mà \(BH=HE\Rightarrow AD=HE;AD\text{//}HE\)

Do đó: ADHE là hình bình hành

\(c,\) Vì ADHE là hbh mà N là giao AH và DE nên N là trung điểm AH và DE

Mà M là trung điểm AB nên MN là đtb \(\Delta ABH\)

Do đó \(MN//BH\) hay \(MN//BC\)

Ta có N là trung điểm AH và K là trung điểm AC nên NK là đtb \(\Delta ACH\)

Do đó \(NK//HC\) hay \(NK//BC\)

Do đó theo định lí Ta lét thì MN trùng NK hay M,N,K thẳng hàng

Nguyễn Lê Phước Thịnh
22 tháng 12 2021 lúc 7:01

a: Xét tứ giác AHBD có

M là trung điểm của AB

M là trung điểm của HD

Do đó: AHBD là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AHBD là hình chữ nhật


Các câu hỏi tương tự
Hà Triệu Mẫn
Xem chi tiết
bùi khánh toàn
Xem chi tiết
Trang Như
Xem chi tiết
黎明田 Mukbang
Xem chi tiết
Dang Khoa ~xh
Xem chi tiết
ѵõ • ռɠυყêռ • ɭậρ
Xem chi tiết
Chill Lofi
Xem chi tiết
Nguyễn Ánh Nguyệt
Xem chi tiết
dangkhoa0910
Xem chi tiết