Cho tam giác ABC vuông tại A (AB < AC), đường cao AH, gọi M là trung điểm của AB. Trên tia đối của tia MH lấy điểm D sao cho MD = MH. a) Chứng minh : tứ giác AHBD là hình chữ nhật. b) Gọi E là điểm đối xứng của B qua điểm H. Chứng minh tứ giác ADHE là hình bình hành. c)Gọi N là giao điểm của AH và DE,K là trung điểm AC.Chứng minh MN//BC và 3 điểm M,N,K thẳng hàng
\(a,\) Vì M là trung điểm AB cà DH nên AHBD là hình bình hành
Mà \(\widehat{AHB}=90^0\) (đường cao AH) nên AHBD là hcn
\(b,\) Vì AHBD là hcn nên \(AD=BH;AD\text{//}HB\)
Mà \(BH=HE\Rightarrow AD=HE;AD\text{//}HE\)
Do đó: ADHE là hình bình hành
\(c,\) Vì ADHE là hbh mà N là giao AH và DE nên N là trung điểm AH và DE
Mà M là trung điểm AB nên MN là đtb \(\Delta ABH\)
Do đó \(MN//BH\) hay \(MN//BC\)
Ta có N là trung điểm AH và K là trung điểm AC nên NK là đtb \(\Delta ACH\)
Do đó \(NK//HC\) hay \(NK//BC\)
Do đó theo định lí Ta lét thì MN trùng NK hay M,N,K thẳng hàng
a: Xét tứ giác AHBD có
M là trung điểm của AB
M là trung điểm của HD
Do đó: AHBD là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AHBD là hình chữ nhật