cho tam giác ABC , các đườn trung tuyến tương ứng AA',BB',CC' . G là trọng tâm tam giác ABC .chúng minh với mọi M bất kì ta có
\(2\overrightarrow{MA}\overrightarrow{MA'}+\overrightarrow{MB}\overrightarrow{MC}=3MG^2-\frac{AB^2+AC^2+BC^2}{6}\)
1. Cho tam giác ABC có M,N,P là trung điểm BC, CA,AB. CMR:
\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\)
2. Cho tam giác ABC có I, J thỏa mãn: \(\overrightarrow{IA}=2\overrightarrow{IB},3\overrightarrow{JA}+2\overrightarrow{JC}=\overrightarrow{0}\), G là trọng tâm tam giác ABC.
a, Biểu thị vecto AI,AJ, AG theo vecto AB,AC
b CMR I,J,G thẳng hàng
Cho tam giác ABC. Gọi M, N là các điểm thỏa mãn \(\overrightarrow{AM}=\dfrac{1}{3}\overrightarrow{AB,}\overrightarrow{CN}=2\overrightarrow{BC}\)
Chứng minh rằng: \(\overrightarrow{MN}=\dfrac{-7}{3}+3\overrightarrow{AC}\)
Cho tam giác ABC có G là trọng tâm; I là trung điểm của BC; M,N là các điểm thỏa mãn:
\(3\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0};2\overrightarrow{NB}+3\overrightarrow{NC}=\overrightarrow{0}.\)CMR: G,N,M thẳng hàng và \(\overrightarrow{IG}=-\frac{1}{6}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
Cho hbh ABCD. \(M\in AB;N\in CD:\overrightarrow{AM}=\frac{1}{3}\overrightarrow{AB};\overrightarrow{DN}=\frac{1}{2}\overrightarrow{DC}\). Gọi I, J là các điểm thỏa mãn : \(\overrightarrow{BI}=m\overrightarrow{BC};\overrightarrow{AJ}=n\overrightarrow{AI}\). Khi J à trọng tâm tam giác BMN thì m.n = ?
a.Cho tam giác ABC có trọng tâm G.Gọi H là điểm đối xứng của B qua G. Phân tích \(\overrightarrow{AH}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\) , phân tích \(\overrightarrow{CH}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\) .
b.Cho tam giác ABC với trọng tâm G,gọi M là trung điểm của đoạn AG.Chứng minh \(\overrightarrow{CM}\) =\(\frac{2}{3}\overrightarrow{CA}+\frac{1}{6}\overrightarrow{CB}\)
Cho tứ giác ABCD và M , N lần lượt là trung điểm của đoạn thẳng AB , CD . Chứng minh rằng :
a / \(\overrightarrow{CA}+\overrightarrow{DB}=\overrightarrow{CB}+\overrightarrow{DA}=2\overrightarrow{MN}\)
b / \(\overrightarrow{AD}+\overrightarrow{BD}+\overrightarrow{AC}+\overrightarrow{BC}=4\overrightarrow{MN}\)
c / Gọi I là trung điểm của BC . Chứng minh rằng : \(2\left(\overrightarrow{AB}+\overrightarrow{AI}+\overrightarrow{NA}+\overrightarrow{DA}\right)=3\overrightarrow{DB}\)
HELP ME !!!!!!!!!!!
Cho hình bình hành ABCD có M là trung điểm của BC, G là trọng tâm tam giác ABC. Chứng minh: \(\overrightarrow{BD}+\overrightarrow{2AM}=\overrightarrow{3GC}\)
CHo tam giác ABC , trọng tâm G . gọi M là trung điểm BC. Khẳng định nào sau đây là đúng?
a, \(\overrightarrow{AG}=\frac{2}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}\)
b, AG = 1/3 AB +1/2 AC
c. AG = 2/3 AC+ 1/3 BC
d. AG=2/3 AB +1/3BC