Lời giải:
Ta có:
\(\overrightarrow{CI}=\overrightarrow{CB}+\overrightarrow{BI}=\overrightarrow{CB}+2\overrightarrow{BG}\)
\(=\overrightarrow{CB}+2. \frac{2}{3}\overrightarrow{BM}=\overrightarrow{CB}+ \frac{2}{3}(\overrightarrow{BM}+\overrightarrow{BM})\)
\(=\overrightarrow{CB}+\frac{2}{3}(\overrightarrow{BA}+\overrightarrow{AM}+\overrightarrow{BC}+\overrightarrow{CM})\)
\(=-\overrightarrow{BC}+\frac{2}{3}\overrightarrow {BC}+\frac{2}{3}\overrightarrow{BA}+\frac{2}{3}(\overrightarrow{AM}+\overrightarrow{CM})\)
\(=\frac{-1}{3}\overrightarrow{BC}+\frac{2}{3}\overrightarrow{BA}\) (tổng 2 vecto đối nhau thì bằng $0$)
\(=\frac{-1}{3}(\overrightarrow{BA}+\overrightarrow{AC})+\frac{2}{3}\overrightarrow{BA}\)
\(=\frac{1}{3}\overrightarrow{AC}+\overrightarrow{BA}=\frac{-1}{3}\overrightarrow{AC}+\frac{1}{3}\overrightarrow{BA}=\frac{-1}{3}\overrightarrow{AC}+\frac{-1}{3}\overrightarrow{AB}\)