Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngọc Huyềnn

Cho tam giác ABC có AB=AC=\(\sqrt{5}\) cm,độ dài đường cao AH=\(\sqrt{3}\) cm .Gọi M,N lần lượt là trung điểm của HC và AC.Tính độ dài đoạn thẳng AM và BN

Lê Thị Thục Hiền
1 tháng 7 2021 lúc 17:09

Do AH là đường cao trong tam giác ABC cân tại A nên AH cùng là đường trung tuyến

\(\Rightarrow\)H là trung điểm của BC

Áp dụng định lý py-ta-go vào tam giác vuông AHC có:
\(HC=\sqrt{AC^2-AH^2}=\sqrt{2}\left(cm\right)\)

 

Do M là trung điểm của HC\(\Rightarrow HM=\dfrac{HC}{2}=\dfrac{\sqrt{2}}{2}\) (cm)

Áp dụng định lý py-ta-go vào tam giác AMH vuông có:

\(AH^2+HM^2=AM^2\)

\(\Leftrightarrow AM=\sqrt{AH^2+HM^2}=\sqrt{3+\dfrac{1}{2}}=\dfrac{\sqrt{14}}{2}\left(cm\right)\)

Có M và H lần lượt là tđ của HC và CA

Suy ra MN là đường trung bình của tam giác AHC

\(\Rightarrow\) MN//AH và \(MN=\dfrac{AH}{2}=\dfrac{\sqrt{3}}{2}\)(cm)

Vì \(AH\perp BC\)\(\Rightarrow MN\perp BC\)

Áp dụng định lý py-ta-go vào tam giác BNM vuông có:

\(BN^2=MN^2+BM^2=\dfrac{3}{4}+\left(BC-MC\right)^2=\dfrac{3}{4}+\left(2HC-HM\right)^2=\dfrac{3}{4}+\dfrac{9}{2}=\dfrac{21}{4}\)

\(\Rightarrow BN=\dfrac{\sqrt{21}}{2}\) (cm)

Vậy...

Ngọc Huyềnn
1 tháng 7 2021 lúc 16:51

Bạn nào giúp em với em sắp nộp bài rùi ạ!

 

Nguyễn Việt Lâm
1 tháng 7 2021 lúc 17:10

\(AB=AC\Rightarrow\Delta ABC\) cân tại A \(\Rightarrow\) AH là đường cao đồng thời là trung tuyến hay H là trung điểm BC

\(\Rightarrow BH=CH\)

Pitago cho tam giác ACH: \(CH=\sqrt{AC^2-AH^2}=\sqrt{2}\)

\(\Rightarrow HM=\dfrac{1}{2}CH=\dfrac{\sqrt{2}}{2}\) \(\Rightarrow BM=BH+HM=CH+HM=\dfrac{3\sqrt{2}}{2}\)

Pitago tam giác AHM: \(AM=\sqrt{AH^2+HM^2}=\dfrac{\sqrt{14}}{2}\)

Do N là trung điểm AC, M là trung điểm HC \(\Rightarrow MN\) là đường trung bình tam giác ACH

\(\Rightarrow\left\{{}\begin{matrix}MN||AH\Rightarrow MN\perp BC\\MN=\dfrac{1}{2}AH=\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)

Pitago tam giác BMN: \(BN=\sqrt{BM^2+MN^2}=\dfrac{\sqrt{21}}{2}\)

Nguyễn Việt Lâm
1 tháng 7 2021 lúc 17:10

undefined

missing you =
1 tháng 7 2021 lúc 17:13

áp dụng pytago \(=>HC=\sqrt{AC^2-AH^2}=\sqrt{5-3}=\sqrt{2}cm\)

M là trung điểm HC\(=>HM=MC=\dfrac{1}{2}HC=\dfrac{\sqrt{2}}{2}cm\)

theo pytago\(=>AM=\sqrt{HM^2+AH^2}=\sqrt{\left(\dfrac{\sqrt{2}}{2}\right)^2+3}=\dfrac{\sqrt{14}}{2}cm\)

có M,N là trung điểm HC,AC=>MN là đường trung bình tam giác AHC

\(=>MN//AH\) mà \(AH\perp BC=>MN\perp BC\)

cũng từ MN là đường trung bình \(=>MN=\dfrac{1}{2}AH=\dfrac{\sqrt{3}}{2}cm\)

do AB=AC=>tam giác ABC cân tại A có AH là đ cao đồng thời là trung tuyến

\(=>BH=HC=\sqrt{2}cm\)

áp dụng pytago\(=>BN=\sqrt{MN^2+\left(BH+HM\right)^2}\)

\(=\sqrt{\left(\dfrac{\sqrt{3}}{2}\right)^2+\left(\sqrt{2}+\dfrac{\sqrt{2}}{2}\right)^2}=\dfrac{\sqrt{21}}{2}cm\)


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Đỗ Văn Hiêu
Xem chi tiết
Lương Thanh Thảo
Xem chi tiết
Yêu Jin
Xem chi tiết
Dương Trần Quang Duy
Xem chi tiết
Dương Trần Quang Duy
Xem chi tiết
Nguyễn Hồng Hạnh
Xem chi tiết
pham ngoc khanh linh
Xem chi tiết
Nguyễn Mai Chi
Xem chi tiết