Ta có:
\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-2m\end{cases}}\)
Gọi S, P là tổng và tích 2 nghiệm của phương trình cần tìm thì ta có
\(S=\frac{1}{x_1+1}+\frac{1}{x_2+1}=\frac{x_1+x_2+2}{x_1x_2+x_1+x_2+1}=\frac{2+2}{-2m+2+1}=\frac{4}{3-2m}\)
\(P=\frac{1}{x_1+1}.\frac{1}{x_2+1}=\frac{1}{x_1x_2+x_1+x_2+1}=\frac{1}{-2m+2+1}=\frac{1}{3-2m}\)
Phương trình cần tìm là:
\(X^2-\frac{4}{3-2m}X+\frac{1}{3-2m}=0\)
phải tìm điều kiện để phương trình có 2 nghiệm x1,x2