Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Imm Hangg

cho phương trình : x^2 - 2(m+1)x + m^2 +1=0 tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn x1- x2= 1

Nguyễn Lê Phước Thịnh
25 tháng 8 2021 lúc 21:21

Ta có: \(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(m^2+1\right)\)

\(=\left(2m+2\right)^2-4\left(m^2+1\right)\)

\(=4m^2+8m+4-4m^2-4\)

=8m

Để phương trình có hai nghiệm phân biệt thì Δ>0

hay m>0

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=m^2+1\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1-x_2=1\\x_1+x_2=2m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x_1=2m+3\\x_1-x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{2m+3}{2}\\x_2=\dfrac{2m+3-2}{2}=\dfrac{2m+1}{2}\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=m^2+1\)

\(\Leftrightarrow\dfrac{\left(2m+3\right)\left(2m+1\right)}{4}=m^2+1\)

\(\Leftrightarrow4m^2+2m+6m+3=4m^2+4\)

\(\Leftrightarrow8m=1\)

hay \(m=\dfrac{1}{8}\left(nhận\right)\)


Các câu hỏi tương tự
Phạm Tuân
Xem chi tiết
Nguyễn Đình Tuấn Khang
Xem chi tiết
Hiền Hòa
Xem chi tiết
Đặng Việt Hùng
Xem chi tiết
Oanh Lê
Xem chi tiết
Nguyễn Minh Quân
Xem chi tiết
phongnthi nguyen
Xem chi tiết
Trần Thị Minh	Phương
Xem chi tiết
Võ Khánh Phương
Xem chi tiết