Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-5}{3}\\x_1x_2=\dfrac{2}{3}\end{matrix}\right.\)
\(Q=\dfrac{x_1}{x_2+2}+\dfrac{x_2}{x_1+2}\)
\(\Rightarrow Q=\dfrac{x_1\left(x_1+2\right)}{\left(x_2+2\right)\left(x_1+2\right)}+\dfrac{x_2\left(x_2+2\right)}{\left(x_2+2\right)\left(x_1+2\right)}\)
\(\Rightarrow Q=\dfrac{x^2_1+2x_1+x^2_2+2x_2}{x_1x_2+2x_1+2x_2+4}\)
\(\Rightarrow Q=\dfrac{\left(x^2_1+x^2_2\right)+\left(2x_1+2x_2\right)}{x_1x_2+\left(2x_1+2x_2\right)+4}\)
\(\Rightarrow Q=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)}{x_1x_2+2\left(x_1+x_2\right)+4}\)
\(\Rightarrow Q=\dfrac{\left(-\dfrac{5}{3}\right)^2-2.\dfrac{2}{3}+2\left(\dfrac{-5}{3}\right)}{\dfrac{2}{3}+2\left(\dfrac{-5}{3}\right)+4}\)
\(\Rightarrow Q=\dfrac{-17}{12}\)