Xét (O) có
\(\widehat{CAN}\) là góc nội tiếp chắn cung CN
\(\widehat{BAN}\) là góc nội tiếp chắn cung NB
\(sđ\stackrel\frown{NC}=sđ\stackrel\frown{NB}\)
Do đó: \(\widehat{CAN}=\widehat{BAN}\)
Xét (O) có
\(\widehat{CAN}\) là góc nội tiếp chắn cung CN
\(\widehat{BAN}\) là góc nội tiếp chắn cung NB
\(sđ\stackrel\frown{NC}=sđ\stackrel\frown{NB}\)
Do đó: \(\widehat{CAN}=\widehat{BAN}\)
Cho nửa đường tròn (O;R) đường kính AB và điểm C thuộc nửa đường tròn sao cho cung AC bằng hai lần cung CB. Gọi M và N là điểm chính giữa các cung AC và BC. Nối MN cắt AC tại I. Hạ ND vuông góc với AC, CB cắt NO tại E.
a, Tính góc MIC;
b) Chứng minh DN là tiếp tuyến của (O; R)
c) Cho R = 5cm. Tính độ dài cung CB và diện tích hình quạt OCB.
Cho nửa đường tròn (O) đường kính AB và C là điểm thuộc đường tròn sao cho cung AC bằng a.Chứng minh góc CAB = 3CBA : b.Gọi M, N lần lượt là điểm chính giữa của các cung AC và BC. Hai dây AN và BM cắt nhau tại I. Chứng minh rằng tia CI là tia phân giác của ACB
Cho nửa đường tròn đường kính AB và dây AC. Từ một điểm D trên AC, vẽ DE vuông góc với AB. Hai đường thẳng DE và BC cắt nhau tại F. Chứng minh rằng:
a) Tứ giác BCDE nội tiếp.
b)góc AFE= ACE.
Cho nửa đường tròn (O) đường kính AB,K là điểm chính giữa cung AB. Vẽ bán kính OC sao cho góc BOC= 60 độ.
a)Gọi M là giao điểm của AC và OK. Chứng minh MO=MC
b)Cho AB= 2R, tính OM theo R
Bài 1: Cho nửa đường tròn (O) đường kính AB và dây cung AC. N là điểm chính giữa của cung CB. Chưng minh AN là tia phân giác của góc CAB
Bài 2: Cho tam giác ABC nhọn nối tiếp đường trnf (O) đường kính BD. Biết góc BAC bằng 45 độ. Tính số đo góc CBD
Bài 3 cho tam giác ABC nhọn có góc BAC= 60 độ. vẽ đường tròn đường kính BC tâm O cắt AB, AC lần lượt tại D và E. tính số đo góc ODE
giúp mình với mình đang cần gấp :((
Cho đường tròn tâm O đường kính AB, M là điểm chính giữa của một nửa đường tròn (O) với đường kính AB, C là điểm bất kỳ trên nửa còn lại, CM cắt AB tại D. Vẽ dây cung AE vuông góc với CM tại F (E nằm trên đường tròn).
Chứng minh rằng tứ giác ACEM là hình thang cân.Vẽ CH vuông góc với AB (H nằm trên đoạn AB). Chứng minh rằng CM là phân giác góc HCO.Chứng minh rằng \(CD\le\frac{1}{2}AE\).Cho nửa đường tròn (O; R) đường kính AB. Vẽ dây CD = R (C thuộc cung AD). Nối AC và BD cắt nhau tại M
a, Chứng minh rằng khi CD thay đổi vị trí trên nửa đường tròn thì độ lớn góc A M B ^ không đổi
b, Cho A B C ^ = 30 0 , tính độ dài cung nhỏ AC và diện tích hình viên phân giói hạn bởi dây AC và cung nhỏ AC
Cho đường tròn (O), đường kính AB, điểm C nằm giữa A và O. Vẽ đường tròn (O’) có đường kính CB. Kẻ dây DE của đường tròn (O) vuông góc với AC tại trung điểm H của AC. Tứ giác ADCE là hình gì? Vì sao?
Cho đường tròn (O), đường kính AB, điểm C nằm giữa A và O. Vẽ đường tròn (O') có đường kính CB
b) Kẻ dây DE của đường tròn (O) vuông góc với AC tại trung điểm H của AC. Tứ giác ADCE là hình gì ? Vì sao?
Cho đường tròn (O) đường kính AB và C là điểm nằm giữa A và O. Vẽ đường tròn (I) có đường kính CB
a, Xét vị trí tương đối của (O) và (I)
b, Kẻ dây DE của (O) vuông góc với AC tại trung điểm H của AC. Tứ giác ADCE là hình gì?
c, Gọi K là giao điểm của đoạn thẳng DB và (I). Chứng minh ba điểm E, C, K thẳng hàng
d, Chứng minh HK là tiếp tuyến của (1)
Cho nửa đường tròn (O) đường kính AB; AC là một dây cung của nó. Kẻ tiếp tuyến
Ax và kẻ đường phân giác của góc CAx cắt đường tròn tại E và cắt BC kéo dài tại D.
a, Chứng minh rằng
ABD cân và OE // BD
b, Gọi I là giao điểm của AC và BE. Chứng minh DI
⊥
AB
c, Khi C di chuyển trên nửa đường tròn (O) thì D chạy trên đường nào?