Ta có hình ngũ giác ABCDE ta có 4 cách lập vectơ có điểm cuối là điểm A
Các vectơ lập được là:
\(\overrightarrow{BA};\overrightarrow{CA};\overrightarrow{DA};\overrightarrow{EA}\)
Ta có hình ngũ giác ABCDE ta có 4 cách lập vectơ có điểm cuối là điểm A
Các vectơ lập được là:
\(\overrightarrow{BA};\overrightarrow{CA};\overrightarrow{DA};\overrightarrow{EA}\)
Cho ngũ giác ABCDE. Có bao nhiêu vectơ được lập ra từ các cạnh và đường chéo của ngũ giác?
A. 5
B. 10
C. 15
D. 20
Cho một đa giác đều 24 đỉnh. Hỏi: 1. Đa giác có bao nhiêu đường chéo? 2. Từ các đỉnh của đa giác, lập được bao nhiêu: a. Đoạn thẳng. b. Vectơ khác vectơ-không. c. Tam giác.
Cho tứ giác ABCD. Có bao nhiêu vectơ khác vectơ - không có điểm đầu và cuối là các đỉnh của tứ giác?
A. 4
B. 6
C. 8
D. 12
Cho tứ giác ABCD. Có bao nhiêu vectơ khác vectơ không có điểm đầu và cuối là các đỉnh của tứ giác?
A. 6
B. 8
C. 10
D. 12
Câu 1: Cho tam giác ABC có A(3,2); B(4,1) và C(1,5).
a/ Tìm tọa độ trọng tâm G của tam giác ABC.
b/ Tìm tọa độ điểm D để ABCD là hình bình hành
c/ Tìm tọa độ sao cho
Câu 2: Cho ngũ giác ABCDE. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DE. I, J là trung điểm của MP, NQ. Chứng minh rằng:
Cho hình ngũ giác đều ABCDE (các đỉnh lấy theo thứ tự đó và thuận chiều quay của kim đồng hồ) nội tiếp trong đường tròn lượng giác. Số đo bằng radian của các cung lượng giác AB, DA, FA lần lượt là
Cho ngũ giác ABCDE. Dựng điểm M thỏa mãn điều kiện M A → + M B → + M C → + M D → + M E → = 0 → . Gọi G là trọng tâm tam giác ABC, H là trung điểm của DE. Khi đó:
A. M là trung điểm của GH
B. M là điểm thỏa mãn MH = 2MG
C. M là điểm thỏa mãn M H → = 3 2 M G →
D. M là điểm thỏa mãn M H → = 3 2 M G →
Cho lục giác đều ABCDEF tâm O. Hãy chỉ ra các vectơ bằng vectơ AB có điểm đầu và điểm cuối là O hoặc các đỉnh của lục giác.
Cho tam giác ABC. Có bao nhiêu vectơ được lập ra từ các cạnh của tam giác?
A. 3
B. 2
C. 4
D. 6