Cho hình dưới (hình 65a). Chứng minh rằng ba điểm B, K, C thẳng hàng
Cho góc nhọn xOy, trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Gọi H là trung điểm của đoạn thẳng AB.
a) Chứng minh: ∆OAH = ∆OBH
b) Từ A vẽ đường thẳng vuông góc với OA, cắt tia OH tại C. Chứng minh: CB ⊥ OB.
c) Gọi I là trung điểm đoạn thẳng OH, từ I vẽ đường thẳng vuông góc với OH, cắt tia OA tại M. Kẻ HK vuông góc với BC tại K. Chứng minh: ba điểm M, H, K thẳng hàng.
có vẽ hình
Cho △ABC vuông tại A, đường phân giác góc B cắt AC tại D. Vẽ DH⊥BC(HϵBC).
a) Chứng minh: △ABD=△HBD
b) Trên tia đối của AB lấy điểm K sao cho AK=HC. Chứng minh ba điểm K, D, H thẳng hàng
: Cho tam giác nhọn ABC có M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho
MD = MA
Chứng minh AMB = DMC.
b) Chứng minh AB // CD.
c) Từ M vẽ MH AB (HAB), MK CD (KCD). Chứng minh ba điểm H, M, K thẳng hàng
Cho hình 51: Chứng minh ba điểm B, C, D thẳng hàng.
1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.
a. Chứng minh: ∆BAD = ∆BED
b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE
c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC
2.
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D.
a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC
b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.
c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.
3.
Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.
a.Chứng minh: ∆ABE = ∆MBE.
b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,
c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC
4
Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.
a) Chứng minh ∆ABM = ∆ACM
b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.
c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng
d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.
Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE=BA. Vẽ AH vuông góc BC tại H
a) Chứng minh rằng: Tam giác ABD = tam giác EBD và AD=ED
b) Chứng minh rằng: AH//DE
c) Trên tia DE lấy điểm K sao cho DK=AH. Gọi M là trung điểm của đoạn thẳng DH. Chứng minh rằng: A,M,K thẳng hàng
( Vẽ hình và giải giúp mình nhé!)
Cho ΔMNP, H là trung điểm của NP. Trên tia đối của HM lấy điểm K sao cho HK=HM a, Chứng minh ΔMHP= ΔKHN b, Chứng minh MP//NK c, Gọi X là một điểm trên MP, Y là một điểm trên NK sao cho MX=KY. Chứng minh ba điểm X, H, Y thẳng hàng (có hình)
Cho tam giác ABC có 3 góc nhọn (AB<AC<BC),đường phân giác của góc A và góc C cắt nhau tại O.Gọi F,H lần lượt là hình chiếu của O trên BC,AC.Trên đoạn FC lấy I sao cho AH=FI.Gọi K là giao điểm của AI và FH.
a)Chứng minh tam giác FHC cân
b)Vẽ IG // AC (G thuộc FH).Chứng minh AK=KI
c)Chứng minh ba điểm B,O,K thẳng hàng