AD // CF ---> AFCD là hbh ---> AF = CD
DK // BC ---> DKBC là hbh ---> BK = CD
---> AB-AF = AB-BK hay FB = AK (1)
AM // FB ---> ^MAK = ^PFB (góc đồng vị) (2)
MK // PB ---> ^MKA = ^PBF (góc đồng vị) (3)
(1),(2),(3) ---> 2 t/g MAK và PFB bằng nhau (gcg) ---> MA = PF (4)
Mà AC // PF ---> MA // PF (5)
(4),(5) ---> MAFB là hbh ---> MP // AF ---> MP // AB
b)
Gọi Q là giao điểm của MP và CF, B' là giao điểm của DQ và AB ---> B và B' nằm cùng phía đối với đt CF
CD // FB' ---> 2 t/g QCD và QFB' đồng dạng ---> QC/QF = CD/FB' (5)
QP // FB ---> QC/QF = PC/PB (6)
FB // AC ---> PC/PB = FA/FB = CD/FB (7)
(5),(6),(7) ---> FB' = FB
Mà B và B' nằm cùng phía đối với đt CF nên B' trùng B ---> DB đi qua Q hay nói cách khác MP,CF,DB đồng quy tại Q