Gọi M là trung điểm của SC, N là trung điểm của SA
=>D,P,M thẳng hàng và DP=2/3DM
D,Q,N thẳng hàng và DQ=2/3DN
Xét ΔDMN co DP/DM=DQ/DN
nên PQ//MN
Xét ΔASC có SN/SA=SM/SC
nên MN//AC
=>PQ//AC
=>PQ//(SAC)
Gọi M là trung điểm của SC, N là trung điểm của SA
=>D,P,M thẳng hàng và DP=2/3DM
D,Q,N thẳng hàng và DQ=2/3DN
Xét ΔDMN co DP/DM=DQ/DN
nên PQ//MN
Xét ΔASC có SN/SA=SM/SC
nên MN//AC
=>PQ//AC
=>PQ//(SAC)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G, N lần lượt là trọng tâm tam giác SCD, ABD. Trên các cạnh SB lấy điểm M sao cho SB = 3SM.
Chứng minh NG // (SAD)
Chứng minh MN //(SAD)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G,H lần lượt là trọng tâm của tam giác SAD và ABC . Chứng minh rằng GH// (SAB)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung tâm của SB, SC. Chứng minh: a. ON//(SAB) b. (OMN)//(SCD)
cho hình chóp S.ABCD, đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm các cạnh SA, SB
a) chứng minh (OMN) // (SCD)
b) chứng minh MN // (ABCD)
c) chứng minh ME // (SCD), với E là trung điểm ON
cho hình chóp S.ABCD, đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm các cạnh SA, SB
a) chứng minh (OMN) // (SCD)
b) chứng minh MN // (ABCD)
c) chứng minh ME // (SCD), với E là trung điểm ON
cho hình chóp S.ABCD, đáy ABCD là hình bình hành, tâm O. Gọi M là trung điểm SC
a) vẽ hình
b) xét vị trí tương đối của OM và (SAC)
c) chứng minh OM ∥ (SAD)
d) chứng minh SA ∥ (MBD)
e) tìm giao tuyến của (OMD) và (SAD)
cho hình chóp S.ABCD, đáy ABCD là hình bình hành, tâm O. Gọi M là trung điểm SC
a) vẽ hình
b) xét vị trí tương đối của OM và (SAC)
c) chứng minh OM ∥ (SAD)
d) chứng minh SA ∥ (MBD)
e) tìm giao tuyến của (OMD) và (SAD)
cho hình chóp S.ABCD, đáy ABCD là hình bình hành, tâm O. Gọi M là trung điểm SC
a) vẽ hình
b) xét vị trí tương đối của OM và (SAC)
c) chứng minh OM ∥ (SAD)
d) chứng minh SA ∥ (MBD)
e) tìm giao tuyến của (OMD) và (SAD)
cho hình chóp S.ABCD đáy ABCD là hình bình hành, tâm O. Gọi M là trung điểm SC
a) xác định vị trí tương đối của OM và (SAC)
b) Chứng minh OM ll (SAD)
c) Chứng minh SA ll (MBD)
d) tìm giao tuyến (OMD) và (SAD)
Cho hình chóp S.ABCD, đáy ABCD là hình bình hành tâm O. gọi M,N lần lượt là trung điểm của SA, SD
a, chứng minh răng (OMN) || (SBC)
b, Gọi P,Q lần lượt là trung điểm của AB, ON . Chứng minh rằng PQ || ( SBC)