Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vinne

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G,H lần lượt là trọng tâm của tam giác SAD và ABC . Chứng minh rằng GH// (SAB)

Nguyễn Lê Phước Thịnh
8 tháng 12 2023 lúc 5:05

Trong mp(SDA), gọi E là giao điểm của SG với AD

Trong mp(SBC), gọi K là giao điểm của SH với BC

Xét ΔSAD có

G là trọng tâm của ΔSAD
E là giao điểm của SG với AD

Do đó: E là trung điểm của AD

Xét ΔSBC có

H là trọng tâm của ΔSBC

SH cắt BC tại K

Do đó: K là trung điểm của BC

Xét hình thang ABCD(AB//CD) có

E,K lần lượt là trung điểm của AD,BC

=>EK là đường trung bình

=>EK//AB

Xét ΔSDE có

SE là đường trung tuyến

G là trọng tâm

Do đó: \(\dfrac{SG}{SE}=\dfrac{2}{3}\)

Xét ΔSBC có

H là trọng tâm của ΔSBC

SK là đường trung tuyến

Do đó: \(\dfrac{SH}{SK}=\dfrac{2}{3}\)

Xét ΔSEK có \(\dfrac{SG}{SE}=\dfrac{SH}{SK}\left(=\dfrac{2}{3}\right)\)

nên GH//EK

mà EK//AB

nên GH//AB

Ta có: GH//AB

AB\(\subset\)(SAB)

GH không nằm trong mp(SAB)

Do đó: GH//(SAB)