Chọn hệ trục tọa độ :
\(A(0;0;0);B(2𝑎;0;0);D(0;𝑎;0);C(2𝑎;𝑎;0)\)
\(S\left(0;0;h\right)\) với \(SA\perp\left(ABCD\right)\)
\(M\left(a;0;0\right)\) (\(M\) là trung điểm \(AB\))
Ta có \(\left[S;DC;B\right]=60^o\Rightarrow cos60^o=\dfrac{\left|\overrightarrow{SD}.\overrightarrow{n}\right|}{SD.n}\)
\(\overrightarrow{DC}=\left(2a;0;0\right);\overrightarrow{DB}=\left(2a;-a;0\right)\)
\(\overrightarrow{n}=\overrightarrow{DC}.\overrightarrow{DB}=\left(0;0;-2a^2\right)\)
\(\Rightarrow\overrightarrow{SD}=\left(0;a;h\right)\Rightarrow SD=\sqrt{a^2+h^2};n=2a^2\)
\(\Rightarrow\overrightarrow{SD}.\overrightarrow{n}=\left(0;a;h\right).\left(0;0;-2a^2\right)=-2a^2h\)
\(\Rightarrow cos60^o=\dfrac{h}{\sqrt{a^2+h^2}}\Rightarrow h=\dfrac{a}{\sqrt{3}}\)
Xét \(\left(SAD\right):S\left(0;0;h\right);A\left(0;0;0\right);D\left(0;a;0\right)\)
\(x=0\Rightarrow\left(SAD\right):x=0\)
Xét \(\left(SMC\right):S\left(0;0;h\right);M\left(a;0;0\right);C\left(2a;a;0\right)\)
\(\overrightarrow{SM}=\left(a;0;-h\right);\overrightarrow{SC}=\left(2a;a;-h\right)\)
\(\Rightarrow\overrightarrow{n_{PT}}=\left(ah;ah;a^2\right)\)
\(\Rightarrow\left(SMC\right):hx+hy+az=ah\)
Giao tuyến của \(x=0\) và \(\left(SMC\right)\) là : \(hy+az=ah\)
\(\Rightarrow\left(Sx\right):\left\{{}\begin{matrix}y=t\\z=\dfrac{ah-ht}{a}\end{matrix}\right.\)
\(d\left(A;Sx\right)=\dfrac{h^2}{a\sqrt{1+\dfrac{h^2}{a^2}}}\)
Với \(h^2=\dfrac{1}{3}a^2\Rightarrow d\left(A;Sx\right)=\dfrac{\dfrac{a^2}{3}}{a\sqrt{\dfrac{4}{3}}}=\dfrac{a\sqrt{3}}{6}\)





