Đáp án A
∆ DCM là tam giác đều cạnh a
=> SH ⊥ (ABCD) với H là tâm của ∆ DCM
Do đó (SA;(ABCD))
Đáp án A
∆ DCM là tam giác đều cạnh a
=> SH ⊥ (ABCD) với H là tâm của ∆ DCM
Do đó (SA;(ABCD))
Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB=BC=a ,AD=2a Cạnh SA=2a và SA vuông góc với mặt phẳng (ABCD). Gọi M là trung điểm của cạnh AB và ( α ) là mặt phẳng qua M và vuông góc với AB. Diện tích thiết diện của mặt phẳng ( α ) với hình chóp S.ABCD là
Cho khối chóp S.ABCD có đáy ABCD là hình thang cân với đáy AD và BC. Biết AD=2a, AB=BC=CD=a Hình chiếu vuông góc của S trên mặt phẳng (ABCD) là điểm H thuộc đoạn AD thỏa mãn HD=3HA , SD tạo với đáy một góc 45 o .Tính thể tích V của khối chóp S.ABCD
Hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D; biết AB = AD = 2a, CD = a. Gọi I là trung điểm của AD, biết hai mặt phẳng (SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD), Thể tích khối chóp S.ABCD bằng 3 15 a 3 5 . Góc giữa hai mặt phẳng (SBC) và (ABcD) bằng
A . 90 0
B . 60 0
C . 30 0
D . 45 0
: Cho hình chóp S.ABCD có SA⊥(ABCD) và SA=a; đáy ABCD là hình thang vuông có đáy bé là BC, biết AB=BC=a, AD=2a.
1) Chứng minh các mặt bên của hình chóp là các tam giác vuông
2) Tính khoảng cách giữa AB và SD
3) M, H là trung điểm của AD, SM cm AH⊥(SCM)
4) Tính góc giữa SD và (ABCD); SC và (ABCD)
5) Tính góc giữa SC và (SAD)
6) Tính tổng diện tích các mặt của chóp.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, AB = a, BC = a√3 và SA vuông góc (ABCD). Góc giữa SC và mặt phẳng (ABCD) bằng 45°. Gọi M là trung điểm của đoạn OA. Chứng minh (SAC) vuông góc (SBM)
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, đáy nhỏ của hình thang là CD, cạnh bên SC= a 15 Tam giác SAD là tam giác đều cạnh bằng 2a và nằm trong mặt phẳng vuông góc với đáy. Gọi H là trung điểm AD, khoảng cách từ B đến mặt phẳng (SHC) bằng 2 a 6 Tính thể tích V của khối chóp S.ABCD?
Cho hình chóp S.ABCD với đáy ABCD là hình thang vuông tại A và D, đáy nhỏ của hình thang là CD, cạnh bên SC= a 15 Tam giác SAD là tam giác đều cạnh 2a và nằm trong mặt phẳng vuông góc với đáy. Gọi H là trung điểm của cạnh AD, khoảng cách từ B tới mặt phẳng (SHC) bằng 2 6 a Tính thể tích V của khối chóp S.ABCD?
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với đáy. Biết SA = a AB = 2a RC = a * sqrt(3) a) Chứng minh CD. (SAD) SD và (ABCD). c) Tính khoảng cách từ điểm D đến (SBC). b) Tính góc giữa
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A, D, AD = DC = a, AB = 2a (a > 0). Hình chiếu của S lên mặt đáy trùng với trung điểm I của AD. Thể tích khối chóp S.IBC biết góc giữa SC và mặt đáy bằng 60 0
A . a 3 5 24
B . a 3 15 24
C . a 3 5 8
D . a 3 15 8