Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB= BC= a AD=2 a ; SA vuông góc với mặt phẳng (ABCD) và SA =2a . Gọi M là một điểm trên cạnh AB; α là mặt phẳng đi qua M, vuông góc với AB. Đặt x= AM (0<x<a).
a.Tìm thiết diện của hình chóp S.ABCD với α . Thiết diện là hình gì?
b. Tính diện tích thiết diện theo a và x
Hình chóp S.ABCD có đáy là hình thang vuông ABCD vuông tại A và D, có AB = 2a, AD = DC = a, có cạnh SA vuông góc với mặt phẳng (ABCD) và SA = a.
a) Chứng minh mặt phẳng (SAD) vuông góc với mặt phẳng (SDC), mặt phẳng (SAC) vuông góc với mặt phẳng (SCB).
b) Gọi φ là góc giữa hai mặt phẳng (SBC) và (ABCD), tính tanφ.
c) Gọi (α) là mặt phẳng chứa SD và vuông góc với mặt phẳng (SAC). Hãy xác định (α) và xác định thiết diện của hình chóp S.ABCD với (α)
cho hình chóp SABCD có ABCD là hình thang vuông tại A và B với AB = BC = a , AD = 2a ; SA ⊥ ( ABCD ) và SA = 2a . Gọi M là 1 điểm nằm trên AB ; (α) là mặt phẳng qua M , vuông góc với AB . Đặt x=AM ( 0< x < α ) .
a, Tìm thiết diện của hình chóp với (α) . Thiết diện là hình gì ?
b, Tính diện tích thiết diện theo a và x
dạ giúp mình bài này với ạ , mình cảm ơn ạ
Hình chóp S.ABCD có đáy là hình vuông ABCD tâm O và có cạnh SA vuông góc với mặt phẳng (ABCD). Giả sử (α) là mặt phẳng đi qua A và vuông góc với cạnh SC, (α) cắt SC tại I.
a) Xác định giao điểm K của SO với mặt phẳng (α).
b) Chứng minh mặt phẳng (SBD) vuông góc với mặt phẳng (SAC) và BD // (α).
c) Xác định giao tuyến d của mặt phẳng (SBD) và mặt phẳng (α). Tìm thiết diện cắt hình chóp S.ABCD bởi mặt phẳng (α).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Cạnh bên SA vuông góc với đáy,SA= 2 a 3 Gọi I là trung điểm của mặt phẳng (P) đi qua I và vuông góc với SD. Tính diện tích thiết diện của hình chóp cắt bởi mặt phẳng (P).
Hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D; biết AB = AD = 2a, CD = a. Gọi I là trung điểm của AD, biết hai mặt phẳng (SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD), Thể tích khối chóp S.ABCD bằng 3 15 a 3 5 . Góc giữa hai mặt phẳng (SBC) và (ABcD) bằng
A . 90 0
B . 60 0
C . 30 0
D . 45 0
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, SA = 2a và SA vuông góc với mặt đáy (ABCD). Biết AD = 2a, AB = BC = CD = a. Diện tích S của mặt cầu ngoại tiếp hình chóp S.ABCD bằng bao nhiêu?
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB =a, AD = 2a Cạnh bên SA vuông góc với mặt phẳng đáy và cạnh bên SC tạo với đáy một góc 60 o Gọi M, N là trung điểm các cạnh bên SA và SB Khoảng cách từ điểm S đến mặt phẳng (DMN) bằng
A. 2 a 465 31
B. a 31 31
C. a 60 31
D. 2 a 5 31
Hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh SA = a và vuông góc với mặt phẳng (ABCD).
a) Chứng minh rằng các mặt bên của hình chóp là những tam giác vuông.
b) Mặt phẳng (α) đi qua A và vuông góc với cạnh SC lần lượt cắt SB, AC, SD tại B', C', D'. Chứng minh B'D' song song với BD và AB' vuông góc với SB.