Đáp án D
Đặt SA = SB = SC = a ⇒ ∆ S A C đều cạnh a ⇒ A C = a , A B = a 2
Mặt khác B C 2 = S B 2 + S C 2 - 2 S B . S C . cos 120 ° = 2 a 2 - 2 a 2 . - 1 2 = 3 a 2 ⇒ B C = a 3 .
Khi đó ∆ A B C cận tại A, do SA = SB = SC ⇒ hình chiếu vuông góc của S lên mặt phẳng (ABC) là tâm đường tròn ngoại tiếp tam giác ABC và là trung điểm của cạnh huyền BC.