Gọi H là trung điểm của AC
Đỉnh S cách đều các điểm A, B, C
Xác đinh được
Ta có MH//SA
Gọi I là trung điểm của AB
và chứng minh được
Trong tam giác vuông SHI tính được
Chọn A.
Gọi H là trung điểm của AC
Đỉnh S cách đều các điểm A, B, C
Xác đinh được
Ta có MH//SA
Gọi I là trung điểm của AB
và chứng minh được
Trong tam giác vuông SHI tính được
Chọn A.
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng (ABC), góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 60 ° . Gọi M là trung điểm của cạnh AB. Khoảng cách từ B đến mặt phẳng (SMC) bằng
A. a 3
B. a 39 13
C. a
D. a 2
Cho hình chóp S.ABC có tam giác ABC vuông tại A, AB = AC = a, I là trung điểm của SC, hình chiếu vuông góc của S lên mặt phẳng (ABC) là trung điểm H của BC, mặt phẳng (SAB) tạo với đáy 1 góc bằng 60 0 . Tính khoảng cách từ điểm I đến mặt phẳng (SAB) theo a .
A. 3 a 5
B. a 3 4
C. a 3 5
Cho hình chóp S.ABC có đáy là tam giác ABC đều cạnh a, tam giác SBA vuông tại B, tam giác SAC vuông tại C. Biết góc giữa hai mặt phẳng (SAB) và (ABC) bằng 60 ° . Tính khoảng cách từ điểm C đến mặt phẳng (SAB)
A. 3 3 a 8
B. 3 a 4
C. 3 3 a 6
D. 3 3 a 11
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, A B = a , S A = S B = S C . Góc giữa đường thẳng SA và mặt phẳng (ABC) bằng 45 0 . Tính khoảng cách từ điểm S đến mặt phẳng (ABC)
A. a 3 3
B. a 2 2
C. a 2
D. a 3
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A , A B a , S A = S B = S C . Góc giữa đường thẳng SA và mặt phẳng (ABC) bằng 45 ° Tính khoảng cách từ điểm S đến mặt phẳng (ABC)
A. a 3 3
B. a 2 2
C. a 2
D. a 3
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AC = 2a, tam giác SAB và tam giác SCB lần lượt vuông tại A, C. Khoảng cách từ S đến mặt phẳng (ABC) bằng 2a. Cosin của góc giữa hai mặt phẳng (SAB) và (SCB) bằng:
A. 1 3
B. 1 3
C. 1 2
D. 1 2
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = a, BC = 2a; cạnh bên SA vuông góc với mặt đáy. Biết rằng số đo của góc giữa hai mặt phẳng (ABC) và (ABC) bằng 60 ° . Khoảng cách từ trọng tâm G của tam giác SAB đến mặt phẳng (SAC) bằng
A. 2 a 5 15
B. 2 a 5 5
C. 2 a 3
D. a 3
Cho hình chóp S.ABC tam giác ABC vuông tại B có BC=a;AC=2a. Tam giác SAB đều, hình chiếu của S lên mặt phẳng (ABC) trùng với trung điểm AC. Khoảng cách giữa hai đường thẳng SA và BC là:
A. a 66 11
B. 2 a 66 11
C. a 66 3
D. a 66 6
Cho hình chóp S.ABCD có đáy hình chữ nhật, AB = a; AD = 2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 450. Gọi M là trung điểm của SD. Tính theo a khoảng cách d từ điểm M đến mặt phẳng (SAC)
A. d = a 1315 89
B. d = 2 a 1315 89
C. d = 2 a 1513 89
D. d = a 1513 89