Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
level max

Cho góc x với cos x = \(-\dfrac{1}{2}\). Tính giá trị của biểu thức S= \(4\sin^{2_{ }}\)x + 8 tan2 x.

Nguyễn Đức Trí
9 tháng 9 2023 lúc 15:45

Cho biết \(cosx=-\dfrac{1}{2}\)

\(sin^2x+cos^2x=1\Rightarrow sin^2x=1-cos^2x\)

\(\Rightarrow sin^2x=1-\dfrac{1}{4}=\dfrac{3}{4}\)

\(S=4sin^2x+8tan^2x\)

\(\Rightarrow S=4\left(sin^2x+2\dfrac{sin^2x}{cos^2x}\right)\)

\(\Rightarrow S=4\left(\dfrac{3}{4}+2\dfrac{\dfrac{3}{4}}{\dfrac{1}{4}}\right)\)

\(\Rightarrow S=4\left(\dfrac{3}{4}+6\right)\)

\(\Rightarrow S=4.\dfrac{27}{4}=27\)