Tính giá trị của biểu thức sau: B= \(\dfrac{tan\left(\dfrac{23\pi}{2}+x\right).sin\left(2022\pi-x\right).cos\left(x-2021\pi\right)}{cos\left(\dfrac{2021\pi}{2}-x\right).sin\left(x+2023\pi\right)}\)
Giải các pt
a) \(\sqrt{2}\sin\left(2x+\dfrac{\pi}{4}\right)=3\sin x+\cos x+2\)
b) \(\dfrac{\left(2-\sqrt{3}\right)\cos x-2\sin^2\left(\dfrac{x}{2}-\dfrac{\pi}{4}\right)}{2\cos x-1}=1\)
c) \(2\sqrt{2}\cos\left(\dfrac{5\pi}{12}-x\right)\sin x=1\)
\(cosx.tan\left(\pi+x\right)+cos\left(-x\right)-sin\left(\dfrac{\pi}{2}-x\right)+sin\left(\pi-x\right)\)
Tính giá trị biểu thức \(cos\left(x+\dfrac{\Pi}{3}\right)\) biết \(sinx=\dfrac{1}{\sqrt{3}}\left(0< x< \dfrac{\Pi}{2}\right)\)
cho cos α=\(\dfrac{1}{3}\).khi đó giá trị biểu thức B=sin\(\left(\alpha-\dfrac{\Pi}{4}\right)-cos\left(\alpha-\dfrac{\Pi}{4}\right)\)
tính F=\(\sin^2\dfrac{\pi}{6}+\sin^2\dfrac{2\pi}{6}+...+\sin^2\dfrac{5\pi}{6}+\sin^2\pi\)
2/ biết \(\sin\beta=\dfrac{4}{5},0< \beta< \dfrac{\pi}{2}\) giá trị của biểu thúc a=\(\dfrac{\sqrt{3}\sin\left(\alpha+\beta\right)-\dfrac{4\cos\left(\alpha+\beta\right)}{\sqrt{3}}}{\sin\alpha}\)
giải phương tình sau:
\(\dfrac{1}{\sin x}\)+\(\dfrac{1}{\sin\left(x-\dfrac{3\pi}{2}\right)}\)= 4\(\sin\left(\dfrac{7\pi}{4}-x\right)\)cho cos α=\(\dfrac{1}{3}\).khi đó giá trị biểu thức B=sin(α-\(\dfrac{\Pi}{4}\))-cos\(\left(\text{α}-\dfrac{\Pi}{4}\right)\)là bao nhiêu?
có ai bt làm ko giúp mik với
Chứng minh đẳng thức sau: \(\dfrac{3}{4}-\cos^2\left(a-\dfrac{\pi}{3}\right)+\cos a.\cos\left(a-\dfrac{\pi}{3}\right)=\cos^2a\)