a: Xét tứ giác ABEF có \(\widehat{AFB}=\widehat{AEB}=90^0\)
nên ABEF là tứ giác nội tiếp
a: Xét tứ giác ABEF có \(\widehat{AFB}=\widehat{AEB}=90^0\)
nên ABEF là tứ giác nội tiếp
Cho đường tròn (O;R) với dây AB = R√2 cố định. Điểm M thuộc cung lớn AB sao cho tam giác MAB có ba góc nhọn. Các đường cao AE, BF cuar tam giác MAB cắt nhau tại H, cắt đường tròn (O) lần lượt ở P và Q.
a) CM tam giác OAB vuông cân
b) Chứng minh O, P, Q thẳng hàng
c) Gọi S là giao điểm cuaa3 PB và QA. CM SH=2R
Cho đường tròn (O;r) và dây AB = R√2 cố định, M là điểm tùy ý trên cung lớn AB sao cho tam giác AMB có 3 góc nhọn. Gọi H là trực tân của tam giác AMB. P và Q là giao điểm của hai tia AH và BH với đường tròn O. PB cắt QA tại S.
a) Chứng minh PQ là đường kính của đường tròn O
b) Tứ giác AMBS là hình gì? Vì sao?
c) Chứng minh SH có độ dài bằng đường kính của đường tròn (O)
cho đường tròn ( o ; r ) và dây ab cố định ( ab < 2r ) điểm c di động trên đường tròn ( o ; r ) sao cho tam giác ABC luôn nhọn. các đường cao AE , BF cắt nhau tại H
1, ABEF là tứ giác nội tiếp
2, tia phân giác góc AHF cắt CA tại M , tia phân giác góc BHF cắt CB tại N. Chúng minh tam giác CMN cân
3, đường tròn ngoại tiếp tam giác CMN cắt tia phân giác góc ACB tại K. Gọi P là giao điểm của MK và AH, Q là giao điểm của NK và BH. Chứng minh PHQK là hình bình hành và đường thẳng HK luôn đi qua một điểm cố định
Cho tam giác MAB vuông tại M,MB<MA,kẻ MH vuông góc với AB (H thuộc AB).Đường tròn (O) đường kính MH cắt MA,MB lần lượt tại E và F (E,F khác M)
a) đường thẳng EF cắt đường tròn (O') ngoại tiếp tam giác MAB tại P và Q (P thuộc cung MB). Chứng minh tam giác MPQ cân
b)Gọi I là giao điểm thứ 2 của đường tròn (O) với (O') .Đường thẳng EF cắt đường thẳng AB tại K .Chứng minh M,I,K thẳng hàng
Cho đường tròn (O; R), dây AB. Trên cung lớn AB lấy điểm C sao cho A < CB. Các đường cao AE và BF của tam giác ABC cắt nhau tại I.
d) Đường tròn ngoại tiếp tam giác CEF cắt đường tròn (O; R) tại điểm thứ hai là K (K khác C). Vẽ đường kính CD của (O; R). Gọi P là trung điểm của AB. Chứng minh rằng ba điểm K, P, D thẳng hàng.
Bài 1: cho đường tròn (O;R) có dấy BC cố định. Một điểm A di động trên cung lớn BC. Gọi I là giao điểm 3 đường phân giác trong của tam giác ABC. Các tia AI,BI,CI cắt (O) lần lượt tại điểm thứ hai D,E,F. DE,DF cắt AB,AC theo thứ tự tại M,N. Chứng minh 3 điểm M,I,N thẳng hàng
Bài 2: Cho tam giác ABC nội tiếp đường tròn (O). Tiếp tuyến tại B và C với (O) cắt nhau tại M, đường thẳng AM cắt (O) tại N. Gọi P,Q lần lượt là giao điểm của đường thẳng vuông góc với NC tại C với (O) và BN. AP cắt BC tại E. MO cắt PQ ở D. Chứng minh:
1) tứ giác AMBD nội tiếp
2) Ba điểm M,Q,E thẳng hàng
Cho đường tròn (O;R) và dây MN cố định. Gọi A là điểm chính giữa của cung lớn MN, đường kính AB cắt MN tại E. Lấy điểm C thuộc MN sao cho C khác M, N, E và BC cắt đường tròn (O;R) ở K. Chứng minh rằng:
a) Tứ giác KAEC nội tiếp
b) \(BM^2\) = BC.BK
Cho đường tròn (O,R) đường kính AB cố định . Dây CD di động vuông góc với AB tại H giữa A và O . Lấy điểm F thuộc cung AC nhỏ ; BF cắt CD tại E , AF cắt tia DC tại l
1. Chứng minh : tứ giác AHEF nội tiếp
2. Chứng minh : HA.HB = HE.HI
3. Đường tròn nội tiếp tam giác IEF cắt AE tại M . Chứng minh M thuộc đường tròn (O,R).
4. Tìm vị trí của H trên OA để tam giác OHD có chu vi lớn nhất
Bài 1:
Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:
a) Góc AHN = ACB
b) Tứ giác BMNC nội tiếp.
c) Điểm I là trực tâm tam giác APQ.
Bài 2:
Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là điểm chính giữa của các cung nhỏ AC và BC. Các đường thẳng BN và AC cắt nhau tại I, các dây cung AN và BC cắt nhau ở P. Chứng minh:
a) Tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó.
b) KN là tiếp tuyến của đường tròn (O; R).
c) Chứng minh rằng khi C di động trên đường tròn (O;R) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định.
1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H.
a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.
b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi C di động trên (O).
c) Chứng minh ba đường thẳng MH, CF và BI đồng qui tại một điểm.
2) Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O;R). Gọi M là điểm di động trên cung nhỏ BC. Vẽ AD vuông góc với MB tại D, AE vuông góc với MC tại E. Gọi H là giao điểm của DE và BC.
a) Chứng minh A, H,E cùng thuộc một đường tròn. Từ đó suy ra DE luôn đi qua một điểm cố định.
b) Xác định vị trí của M để MB/AD×MC/AE đạt giá trị lớn nhất.
Mọi người giúp em với ạ.