a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
\(\widehat{ABD}=\widehat{MBD}\)
Do đó: ΔBAD=ΔBMD
b: ΔBAD=ΔBMD
=>DA=DM
mà DM<DC(ΔDMC vuông tại M)
nên DA<DC
a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
\(\widehat{ABD}=\widehat{MBD}\)
Do đó: ΔBAD=ΔBMD
b: ΔBAD=ΔBMD
=>DA=DM
mà DM<DC(ΔDMC vuông tại M)
nên DA<DC
Cho tam giác ABC vuông tại A có AB<AC , kẻ đường phân giác BD của ABC ( D thuộc AC). Kẻ DM vuông góc với BC tại M.
a) Chứng minh tam giác DAB= tam giác DMB
b) Chứng minh AD<DC
c) Gọi K là giao điểm của đường thẳng DM và đường thẳng AB
, đường thẳng BD cắt KC tại N. Chứng minh BN vuông góc với KC và tam giác KDC cân tại B
cho tam giác ABC vuông tại A có AB<AC, kẻ đường phân giác BD của ABC( D thuộc AC). Kẻ DM vuông góc với BC tại M
a) Chứng minh tam giác DAB= tam giác DMB
b) Chứng minh DK=Dc và AD<DC
Cho tam giác ABC vuông tại A có AB < AC, kẻ đường phân giác BD của góc ABC (D thuộc AC). Kẻ DM vuông góc với BC tại M.
a) Chứng minh tam giác DAB = tam giác DMB.
b) Chứng minh BD là đường trung trực của AM.
c) Gọi K là giao điểm của đường thẳng DM và đường thẳng AB, đường thẳng BD cắt KC tại N. Chứng minh BN vuông góc KC và tam giác KDC cân tại D.
d) Gọi E là trung điểm của BC, qua N kẻ đường thảng song song với BC, đường thẳng này cắt AB tại P. CHứng minh ba đường CP, KE, BN đồng quy.
Cho Tam giác ABC vuông tại A ( AB < AC ). Kẻ tia phân giác của ABC cắt BC tại D. Kẻ DM vuông góc với BC tại M.
a) Chứng minh Tam giác DAB = tam giác DMB.
b) Chứng minh BD vuông góc với AM
c) Gọi K là giao điểm của đường thẳng DM và đường thẳng AB . Chứng minh AM // KC
Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB
a) Chứng minh: DB=DM
b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)
c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng
Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE
a) Chứng minh: DA=DE
b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)
c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng
Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))
a) Chứng minh: HB=HC
b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân
Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)
a) Chứng minh: \(\Delta ABD=\Delta AED;\)
b) BE là đường trung trực của đoạn thẳng AD
c) Gọi F là giao điểm của hai đường thẳng AB và ED Chứng minh BF=EC
Cho \(\Delta ABC\) vuông tại A, có BC=10cm , AC=8cm .kẻ đường phân giác BI ( I \(\in\) AC ), Kẻ ID vuông góc với BC ( D \(\in\) BC ).
a/ Tính AB
b/ Chứng minh \(\Delta\)AIB=\(\Delta DIB\)
c/ Chứng minh BI là đường trung trực của AD
d/ Gọi E là giao điểm của BA và DI . Chứng minh BI vuông góc với EC
ai làm đc cho 10 điểm
cho \(\Delta\)ABC có AB<AC vuông tại B, phân giác AD của góc A cắt BC tại D. từ D kẻ DH vuông góc với AC (H∈AC);và HD và AB kéo dài cắt tai I. Chứng minh rằng:
a) \(\Delta\)ABC = \(\Delta\)AHD
b) AD là trung trực của BH
c) \(\Delta\)DIC cân
d)BH//IC
e) AD\(\perp\)IC
g) BC > AD + AD - 2AB
Cho \(\Delta ABC\) vuông tại A, có BC = 10cm , AC=8 cm .kẻ đường phân giác BI ( I \(\in AC\) ) , kẻ ID vuoog góc với BC (D \(\in BC\) ) .
a/ Tính AB
b/ Chứng minh \(\Delta AIB=\Delta DIB\)
c/ Chứng minh BI là đường trung trực của AD
d/ Gọi E là giao điểm của BA và DI . chứng minh BI vuông góc với EC
ai làm đc bài này ko :))
Cho \(\Delta ABC\)vuông tại A ( AB >AC ), phân giác BD. Qua D kẻ đường thẳng vuông góc với BC tại E.
a, Cho biết AB=9 cm; AC=12 cm. Tính BC .
b,Chứng minh \(\Delta ADE\) cân
c, Chứng minh AD<DC
d, Vẽ CF vuông góc với BD tại F. Chứng minh các đường thẳng AB, DE, CF đồng quy.
Cho \(\Delta ABC\)vuông tại A, AB = 9cm, AC = 12cm. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ đường thẳng qua D vuông góc với BC, đường thẳng này cắt AC ở E và cắt AB ở K
a) Tính BC
b) Chứng minh \(\Delta ABE=\Delta DBE\)và suy ra BE là tia phân giác \(\widehat{ABC}\)
c) Kẻ đường thẳng qua A vuông góc với BC tại H. Đường thẳng này cắt BE ở M. Chứng minh \(\Delta AME\)cân