Có: \(u_n=\sum\limits^n_{k=1}\dfrac{1}{\sqrt{n^2+k}}< \dfrac{n}{\sqrt{n^2+n}}=\dfrac{1}{\sqrt{1+\dfrac{1}{n}}}\)
Lại có: \(u_n=\sum\limits^n_{k=1}\dfrac{1}{\sqrt{n^2+k}}>\dfrac{n}{\sqrt{n^2+1}}=\dfrac{1}{\sqrt{1+\dfrac{1}{n^2}}}\)
\(\Rightarrow\dfrac{1}{\sqrt{1+\dfrac{1}{n^2}}}< u_n< \dfrac{1}{\sqrt{1+\dfrac{1}{n}}},\forall n\ge1\)
Mặt khác \(\lim\limits\left(\dfrac{1}{\sqrt{1+\dfrac{1}{n^2}}}\right)=\lim\limits\left(\dfrac{1}{\sqrt{1+\dfrac{1}{n}}}\right)=1\), nên theo nguyên lí kẹp, ta có \(limu_n=1\)