`a)` Xét `DeltaACD` và `DeltaBCE` có :
`\hat{C}` : chung
`\hat{CDA}=\hat{CEB}=90^o`
`=>DeltaACD~DeltaBCE` (g.g)
`b)` xem lại đề
`a)` Xét `DeltaACD` và `DeltaBCE` có :
`\hat{C}` : chung
`\hat{CDA}=\hat{CEB}=90^o`
`=>DeltaACD~DeltaBCE` (g.g)
`b)` xem lại đề
Cho tam giác nhọn ABC (AB<AC), các đường cao AD,BE và CF cắt nhau tại H.
a) Chứng minh rằng: Tam giác ABC đồng dạng tam giác ACF và AB.AF = AC.AE
b) Chứng minh rằng: góc AED = góc ACB
c) Gọi M là trung điểm của BC, K là giao điểm của đường thẳng EF và đường thẳng BC. Chứng minh BC2 = 4.MD.MK
Cho tam giác ABC(3 góc nhọn) có AD và BE là đường cao cắt nhau tại H.
a,Chứng minh tam giác AEH đồng dạng với tam giác BDH
b,Chứng minh AH.ED=AB.HE
c,Nếu AC=5cm AC=3cm tính tỉ số DB/DH
CH cắt AB tại F Chứng minh rằng HD/AD+HE/BE+HF/CF=1
P/s:chỉ cần làm c d thôi nhé
Cho tam giác ABC nhọn ( AB < AC ) có ba đường cao AD , BE , CF cắt nhau tại H.
a ) Chứng minh : tam giac AEB đồng dạng tam giac AFC
b ) Chứng minh : AF.AB = AE.AC và tam giac AEF đồng dạng với tam giac ABC
c ) Gọi K là giao điểm của AH và EF . Chứng minh : KH.AD = AK.HD
Cho tam giác ABC có ba góc nhọn, Hai đường cao BE và CF cắt nhau tại H.
a) Chứng minh tam giác ABE đồng dạng tam giác ACF
Tia AH cắt BC tại D và cắt EF tại M. Chứng minh AD.MH = AM.HD
Cho tam giác ABC nhọn có AB<AC,các đường cao AD,BE,CF cắt nhau tại H.
a)Chứng mih:tam giác ACD đồng dạng tam giác BCE.
b)Chứng minh:HB.HE=HC.HF.
c)Biết AD=12 cm;BD=5 cm;CD=9 cm.Tính AB;HC ?
d)Chứng minh: \(BC^2\)=BH.BE+CH.CF.
GIẢI GIÚP MIK VS Ạ
cho tam giác abc nhọn (ab<ac) vẽ đường cao be và cf cắt nhau tại h.
a chứng minh tam giác abe đồng dạng với tam giác acf
b chứng minh he.hb=hf.hc
c. ah cắt bc tại d . Chứng minh: BH.BE+CH.CF=BC2
Cho tam giác ABC nhọn(AB<AC) có 3 đường cao AD,BE,CF cắt nhau tại H
a)Chứng minh tam giác ABE và tam giác ACF đồng dạng với nhau
b)Chứng minh DB.BC=Ab.BF
c)Chứng minh góc AFE=góc ACB
Cho AABC có 3 góc nhọn (AB < AC), ba đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh: tam giác ABE đồng dạng tam giác ACF và AC.AE = AB.AF b) Chứng minh: tam giác BDF đồng dạng tam giác BAC và góc BFD = góc BCA
Cho tam giác nhọn ABC, các đường cao AD, BE, CF cắt nhau tại H.a) Chứng minh rằng : ΔABE ∽ ΔACF. Từ đó suy ra AF. AB = AE. AC b) Chứng minh rằng : ΔAEF ∽ ΔABC. c) Vẽ DM vuông góc AC tại M. Gọi K là giao điểm của CH và DM . Chứng minh rằng CD/BD=CM/EMvà BH/EH=DK/MKd) Chứng minh rằng AH. AD + CH. CF = CD^4 / CM^2
Cho tam giác nhọn ABC, các đường cao AD, BE, CF cắt nhau tại H.a) Chứng minh rằng : ΔABE ∽ ΔACF. Từ đó suy ra AF. AB = AE. AC b) Chứng minh rằng : ΔAEF ∽ ΔABC. c) Vẽ DM vuông góc AC tại M. Gọi K là giao điểm của CH và DM . Chứng minh rằng CDBD=CMEMvà BHEH=DKMKd) Chứng minh rằng AH. AD + CH. CF = CD4CM2.