Xét tam giác ABC có: MN//BC
=>\(\dfrac{AM}{AB}=\dfrac{MN}{BC}< =>\dfrac{1}{2}=\dfrac{3}{BC}=>BC=6cm\)
Theo định lí Ta-let, ta có: MN//BC \(\Rightarrow\dfrac{AM}{AB}=\dfrac{AN}{AC}=\dfrac{MN}{BC}=\dfrac{1}{2}\Rightarrow BC=2MN=2.3=6cm\)
Xét tam giác ABC có: MN//BC
=>\(\dfrac{AM}{AB}=\dfrac{MN}{BC}< =>\dfrac{1}{2}=\dfrac{3}{BC}=>BC=6cm\)
Theo định lí Ta-let, ta có: MN//BC \(\Rightarrow\dfrac{AM}{AB}=\dfrac{AN}{AC}=\dfrac{MN}{BC}=\dfrac{1}{2}\Rightarrow BC=2MN=2.3=6cm\)
cho ΔABC có MN // BC ( M∈AB, N∈AC) đẳng thức nào đúng :
A.\(\dfrac{MN}{BC}=\dfrac{AM}{AN}\) B.\(\dfrac{MN}{BC}=\dfrac{AM}{AB}\) C.\(\dfrac{BC}{MN}=\dfrac{AM}{AN}\) D.\(\dfrac{AM}{AB}=\dfrac{AN}{BC}\)
Cho ΔABC, góc A = `90^o` và ΔA′B′C′, góc A' = `90^o` . Biết \(\dfrac{AB}{A'B'}=\dfrac{BC}{B'C'}=2\)
a. Tính \(\dfrac{AC}{A'C'}=?\) b. Chứng minh: ΔABC ∼ ΔA ′B ′C
Cho ΔABC, đường cao AH
Chứng minh:
a)ΔABCᔕΔHBA, AB2=BH*BC
b)AC2=CH*BC
c)AH2=BH*CH
d)\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
e)Biết M ∈ tia đối tia AC, AM<AC
AE⊥BM tại E
Chứng minh góc BEH=góc BAH
1) cho ΔABC ∼ ΔDEF theo tỉ số đồng dạng k=\(\dfrac{3}{2}\) . Diện tích ΔABC là 27 cm\(^2\), thi diện tích ΔDEF là:
A. 12cm\(^2\) B.24cm\(^2\) C. 36cm\(^2\) D. 18cm\(^2\)
2) ΔABC ∼ΔDEF có AB=3cm, AC=5cm, BC=7cm, DE=6cm. Ta có :
A. DF=10cm B. DF=20cm C. EF=14cm D.EF=10cm
cho ΔABC vuông tại A có AB=3cm, AC=4cm. Trên cạnh AB lấy điểm M sao cho AM=1,2cm. Kẻ MN // BC (N∈AC)
a, tính BC
B, Tính MN
c, vẽ AD là đường phân giác của Δ. tính BD
d, tính DC
Cho tam giác ABC có M thuộc AB và AM= \(\dfrac{1}{3}\)AB. Vẽ MN // BC. N thuộc AC
Biết Mn = 2 (cm), thì BC bằng:
a, 6 cm
b, 4 cm
c, 8 cm
d, 10 cm
Cho Δ ABC một đường thẳng song song BC cắt AB và AC tại D và E có DE= \(\dfrac{1}{2}\) BC. CM: DE là đường trung bình của ΔABC
Cho tam giác ABC.Trên các cạnh AB và AC lần lượt lấy 2 điểm M và N sao cho: AM=3cm, AB=4,5cm,AN=4cm,AC=6cm
a) Chứng minh: MN song song BC
b) Cho biết: BC=7,5cm. Tính độ dài đoạn thẳng MN
Cho hình vẽ, biết MN//BC. Tỉ số \(\dfrac{AN}{AC}\) bằng tỉ số:
\(A.\dfrac{AN}{AB}\text{ㅤ}\text{ㅤ}\text{ㅤ}B.\dfrac{AM}{MB}\text{ㅤ}\text{ㅤ}\text{ㅤ}C.\dfrac{NC}{AN}\text{ㅤ}\text{ㅤ}\text{ㅤ}D.\dfrac{MN}{BC}\)