cho hình thang ABCD (AB//CD) có hai đường chéo cắt nhau tại O . Đường thẳng qua O và // với đáy AB cắt cạnh bên AD,BC theo thứ tự ttaij M,N
a. CMR :OM=ON
b. cmr \(\dfrac{\text{1}}{\text{AB}}+\dfrac{\text{1}}{\text{C\text{D}}}=\dfrac{\text{2}}{\text{MN}}\)
c. Biết Saob=\(2011^2\)(đv diện tích) Scod=\(2012^2\)Tính Sabcd
Câu 3: Rút gọn phân thức : \(\dfrac{\text{x^5 + x^5 +1}}{\text{x^2 + x +1}}\)
a/ x3 –x2 +1 b/ x3+x-1 c/ x3 –x2 –x+1 d/ x3-x+1
Câu 4:Rút gọn :\(\dfrac{\text{a^2 - ab - ac + bc}}{\text{a2 + ab - ac - bc}}\)bằng mấy
cho a,b,c là 3 số ≠ 0 thỏa mãn a+b+C=2016 và \(\dfrac{\text{1}}{\text{a}}\)+\(\dfrac{\text{1}}{\text{b}}\)+\(\dfrac{\text{1}}{\text{c}}\)=\(\dfrac{\text{1}}{\text{2016}}\)
CMr: trong ba số a,b,c tồn tại 2 số đối nhau
CMR \(\dfrac{\text{a^2}}{\text{b+c}}\)+\(\dfrac{b^2}{c+a}\)+\(\dfrac{\text{c}\text{ }^2}{\text{a+c}}\)≥\(\dfrac{\text{a+b+c}}{2}\)
Cho a,b,c ≠0 thảo mãn a+b+c=\(\sqrt{\text{2019}}\);\(\dfrac{\text{1}}{\text{a}}\)+\(\dfrac{\text{1}}{\text{b}}\)+\(\dfrac{\text{1}}{\text{c}}\)=0
Tính A=\(a^2+b^2+c^2\)
cho a b là các số thực thỏa mãn a+b ≤2 tìm giá trị biểu thức
A=\(\dfrac{\text{1}}{\text{a^2+b^2}}+\dfrac{\text{1}}{\text{ab}}+ab\)
cho a b là các số thực thỏa mãn\(2a^2\)+ \(\dfrac{\text{1}}{\text{a^2}}\)+\(\dfrac{\text{b^2}}{\text{4}}\)=4
tìm GTNN của biểu thức M=ab
cho \(\dfrac{bz-cy}{a}\)=\(\dfrac{c\text{x}-az}{b}\)=\(\dfrac{ay-b\text{x}}{c}\)
chứng minh rằng: \(\dfrac{\text{x}}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
Cho a,b,c>0
CMR:
\(\dfrac{bc}{a^2b+a^2c}+\dfrac{ca}{ab^2+b^2c}+\dfrac{ab}{ac^2+bc^2}\text{≥}\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)