Cho tam giác ABC. Chứng minh rằng
\(\dfrac{h_b}{h_a^2}+\dfrac{h_c}{h_b^2}+\dfrac{h_a}{h_c^2}>\dfrac{1}{r}\)
CMR trong mọi tam giác ABC
a) \(\frac{1}{r}\) = \(\frac{1}{h_a}\) + \(\frac{1}{h_b}\) + \(\frac{1}{h_c}\)
b) \(\frac{2}{h_a}\) = \(\frac{1}{r}\) - \(\frac{1}{r_a}\) = \(\frac{1}{r_b}\) + \(\frac{1}{r_c}\)
Cho tam giác ABC có cosB=\(\frac{7}{8}\), AC=b, \(h_b=h_a+h_c\). Tính diện tích tam giác.
Cho tam giác ABC có cosB=\(\frac{7}{8}\), AC=b, \(h_b=h_a=h_c\). Tính diện tích tam giác.
a) Cho tam giác ABC có a=7, b=8, c=5. Tính góc A và bán kính đường tròn nội tiếp của tam giác ABC? b) Chứng minh rằng: trong một hình bình hành tổng các bình phương 4 cạnh bằng tổng các bình phương 2 đường chéo
Chứng minh rằng: Với mọi x, y ϵ R ta có: \(\dfrac{x^2}{1+16x^4}+\dfrac{y^2}{1+16y^4}\le\dfrac{1}{4}\)
Cho tam giác ABC có BC = a, AC = b, AB = c, đường phân giác trong ứng với góc A là la. Chứng minh: \(l_a=\dfrac{2bc.\cos\dfrac{A}{2}}{b+c}\)
Cho tam giácABC có hb +hc=2ha.Chứng minh rằng:\(\dfrac{1}{sinB}+\dfrac{1}{sinC}=\dfrac{1}{sinA}\)
Cho tam giác ABC có ba cạnh a,b,c. Chứng minh rằng:
\(\dfrac{a^2+b^2+c^2}{2abc}=\dfrac{cosA}{a}+\dfrac{cosB}{b}+\dfrac{cosC}{c}\)