a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AH chung
HB=HC
=>ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>HB=HC và góc BAH=góc CAH
=>AH là phân giác của góc BAC và H là trung điểm của BC
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AH chung
HB=HC
=>ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>HB=HC và góc BAH=góc CAH
=>AH là phân giác của góc BAC và H là trung điểm của BC
Bài 3. Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC và H thuộc BC
a) Chứng minh: ΔAHB = ΔAHC
b) Tính độ dài AH, biết AB = 13cm và BC = 10cm
c) Từ H kẻ đường thẳng song song với AC cắt AB tại D. Chứng minh AD = DH
d) Gọi E là trung điểm của AC. Gọi K là giao điểm của AH và CD.
Chứng minh: Ba điểm B, K và E là thẳng hàng
Cho ΔABC cân tại A. Vẽ AH vuông góc BC tại H
a) Chứng minh Δ AHB = ΔAHC
b) Gọi I là trung điểm của HC. Qua I vẽ đường thẳng vuông góc với HC, đường thẳng này cắt AC tại D. Chứng minh ΔDHC cân tại D
c) Gọi G là giao điểm của AH và BD, M là trung điểm AB. Chứng minh GM=\(\dfrac{1}{2}\) GB
Bài 3: Cho ΔABC vuông tại A , vẽ tia phân giác BD của góc ABC (D AC). Trên cạnh BC lấy điểm E sao cho BE = AB . a) Chứng minh: ΔABD = ΔEBD b) Chứng minh: Tam giác ADE là tam giác cân. Vẽ AH vuông góc với BC (H BC) . Chứng minh : AH // DE và BAH ACH c) Chứng minh: AE là tia phân giác của góc HAC. d) Gọi K là giao điểm của AB và ED. Chứng minh: AK = EC và AE //
Bài 9: (3,5 điểm) Cho tam giác ABC vuông tại A, lấy điểm m là trung điểm của BC. Vẽ MH AC (H thuộc AC). Trên tia HM lấy điểm K sao cho MK = MH.
a) Chứng minh ΔMHC = ΔMKB rồi suy ra HKB= 90
Chứng minh HK // AB và KB = AH.
Chứng minh ΔMAC cân.
Gọi G là giao điểm của AM và BH. Chứng minh GB + GC > 3GA.
Bài 8: (3,5 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.
Chứng minh rằng ΔAHB = ΔAHC.
Gọi I là trung điểm của cạnh AH. Trên tia đối của tia IB, lấy điểm D sao cho IB = ID. Chứng minh IB = IC, từ đó suy ra AH + BD > AB + AC.
Trên cạnh CI, lấy điểm E sao cho CE 23 CI. Chứng minh ba điểm D, E, H thẳng hàn
Bài 5: Cho ΔABC cân tại A, A= 90. vẽ AH vuông góc với BC tại H.
a) Chứng minh: ΔABH = ΔACH
b) Cho biết AH = 4cm; BH = 3cm. Tính độ dài cạnh AB.
c) Qua H, vẽ đường thẳng song song với AC cắt cạnh AB tại M. Gọi G là giao điểm của CM và AH. Chứng minh G là trọng tâm của ΔABC và tính độ dài cạnh AG.
(Vẽ hình giúp mk với nha mk cần gấp ạ)
cho ΔABC cân tại A.Vẽ AH⊥BC
a,Chứng minh ΔAHB=ΔAHC
b,Vẽ HM⊥AB,HN⊥AC.Chứng minh ΔAMN cân
c,Chứng minh MN//BC
Cho tam giác ABC cân tại A vẽ AH vuông góc với BC tại H
a/Chứng minh ΔAHB=ΔAHC
b/Vẽ HM vuông AB tại M, HN vuông AC tại N. Chứng minh ΔAMN cân
c/Chứng minh MN//BC
d/Chứng minh AH2+BM2=AN2+BH2
Cho ΔABC vuông tại A , vẽ tia phân giác BD của gúc ABC (D Î AC). Trên cạnh BC lấy điểm E sao cho BE = AB , nối D với E .
a) Chứng minh ΔABD = ΔEBD
b) Chứng minh góc BED là góc vuông
Vẽ AH vuông góc với BC (H Î BC) . Chứng minh : và AH // DE
Cho ΔABC cân ở A (∠A < 90o). Vẽ BH ⊥ AC (H ∈ AC), CK ⊥ AB (K ∈ AB).
a) Chứng minh rằng AH = HK
b) Gọi I là giao điểm của BH và CK. Chứng minh rằng AI là tia phân giác của góc A,
c) chứng minh ai vuông gó với bc và m là trung điểm của BC ,
d) chứng minh KH//BC
Cho tam giác ABC cân tại A(góc A < 90º) . Vẽ AH vuông góc với BC tại H.
a. Chứng minh: ΔAHC = ΔAHB.
b. Kẻ HM vuông góc với AC tại M. Trên tia đối của tia HM lấy điểm N sao cho HN = HM. Chứng minh: BN // AC.
c. Kẻ HQ vuông góc với AB tại Q. Chứng minh BC là đường trung trực của NQ.