a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
mà \(\widehat{BAD}=90^0\)(gt)
nên \(\widehat{BED}=90^0\)(đpcm)
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
mà \(\widehat{BAD}=90^0\)(gt)
nên \(\widehat{BED}=90^0\)(đpcm)
Bài 3: Cho ΔABC vuông tại A , vẽ tia phân giác BD của góc ABC (D AC). Trên cạnh BC lấy điểm E sao cho BE = AB . a) Chứng minh: ΔABD = ΔEBD b) Chứng minh: Tam giác ADE là tam giác cân. Vẽ AH vuông góc với BC (H BC) . Chứng minh : AH // DE và BAH ACH c) Chứng minh: AE là tia phân giác của góc HAC. d) Gọi K là giao điểm của AB và ED. Chứng minh: AK = EC và AE //
Cho ΔABC vuông tại A, vẽ BD là tia phân giác góc ABC (D∈AC). Trên cạnh BC, lấy điểm E sao cho AB=BE. Chứng minh rằng:
a) ΔABD= ΔEBD
b) DE⊥BC
c) Từ A kẻ AH vuông góc với BC (H∈ BC), chứng minh góc BAH = góc ACB
cho ΔABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Tia phân giác của góc B cắt AC ở D
a) Chứng minh ΔABD=ΔEBD
b) Tính số đo góc BED
c) Chứng minh BD vuông góc với AE
Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.
a. Chứng minh: ∆BAD = ∆BED
b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE
c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC.
Cho ΔABC vuông tại A, vẽ BD là tia phân giác góc ABC (D∈AC). Trên cạnh BC, lấy điểm E sao cho AB=BE, từ A kẻ AH vuông góc với BC (H∈ BC). Chứng minh rằng góc BAH = góc ACB.
Cho ΔABC vuông tại A , có góc B bằng 57° . Tia phân giác BD của góc ABC cắt AC tại D , trên BC lấy điểm E sao cho BA=BE ( Như hình vẽ bên)
a) Tính số đo góc C
b) Chứng minh ΔABD = ΔEBD và DE
vuông góc với BC
c) Trên tia đối của tia AB lấy điểm I sao cho AI=EC . Chứng minh ba điểm I , D , E thẳng hàng .
Help nhanh nha
Ko biết đừng chat vô nha =/
Cho tam giác ABC vuông ở A, vẽ tia phân giác của góc B cắt cạnh AC tại D (D thuộc AC). Trên cạnh BC lấy điểm E sao cho BE = BA.
a) Chứng minh rằng ABD = EBD
b) Tính số đo góc BED.
c) Vẽ AH vuông góc với BC (H thuộc BC). Chứng minh AH // DE.
Cho ΔABC vuông tại A, AH ⊥ BC tại H. Trên cạnh BC lấy D sao cho BD = BA. Đường vuông góc với BC tại D cắt AC ở E
a) So sánh AE và DE
b) Chứng minh tia AD là tia phân giác của góc HAC
c) Vẽ DK vuông góc với AC tại K. Chứng minh rằng AK = AH
Cho ΔABC vuông tại A , có góc B bằng 57° . Tia phân giác BD của góc ABC cắt AC tại D , trên BC lấy điểm E sao cho BA=BE ( Như hình vẽ bên)
a) Tính số đo góc C
b) Chứng minh ΔABD = ΔEBD và DE\(\) vuông góc với BC
c) Trên tia đối của tia AB lấy điểm I sao cho AI=EC . Chứng minh ba điểm I , D , E thẳng hàng .