`B = (1/(sqrt{x} + 2) + 1/(sqrt{x}- 2)) . (sqrt{x}/(sqrt{x} - 2) - 4/(x - 2sqrt{x})) `
Điều kiện: `x > 0` và `x ne 4`
`B = ((sqrt{x}- 2)/((sqrt{x} + 2)(sqrt{x}- 2)) + (sqrt{x} + 2)/((sqrt{x} + 2)(sqrt{x}- 2))) . ((sqrt{x} . sqrt{x})/(sqrt{x}(sqrt{x} - 2)) - 4/(x - 2sqrt{x})) `
`B = (2sqrt{x})/((sqrt{x} + 2)(sqrt{x}- 2)). (x/(x - 2sqrt{x}) - 4/(x - 2sqrt{x})) `
`B = (2sqrt{x})/((sqrt{x} + 2)(sqrt{x}- 2)). (x-4)/(x - 2sqrt{x})) `
`B = (2sqrt{x})/((sqrt{x} + 2)(sqrt{x}- 2)). (x-4)/(x - 2sqrt{x}) `
`B = (2sqrt{x})/1. 1/(sqrt{x} (sqrt{x} - 2) `
`B = 2/(sqrt{x} - 2)`
Để `B < 0 <=> sqrt{x} - 2 < 0 <=> sqrt{x} <2 <=> x < 4`
Vậy ...