Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
namdz

Cho biểu thức A=\(\dfrac{x}{\sqrt[]{x}}+\dfrac{\sqrt{x}+2x}{x+\sqrt{x}}vớix>0\)

a,Tính giá trị của A khi x=4
b,Tính giá trị của A khi x=(2-căn 3)^2
c,Tính giá trị của A khi x=7-2 căn 3
d,Tìm x để A=2
e,TÌm x để A>1

Nguyễn Lê Phước Thịnh
14 tháng 9 2023 lúc 19:42

a: \(A=\sqrt{x}+\dfrac{\sqrt{x}\left(1+2\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\sqrt{x}+\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)

Khi x=4 thì \(A=2+\dfrac{2\cdot2+1}{2+1}=2+\dfrac{5}{3}=\dfrac{11}{3}\)

b: Khi x=(2-căn 3)^2 thì \(A=2-\sqrt{3}+\dfrac{2\left(2-\sqrt{3}\right)+1}{2-\sqrt{3}+1}\)

\(=2-\sqrt{3}+\dfrac{4-2\sqrt{3}+1}{3-\sqrt{3}}\)

\(=2-\sqrt{3}+\dfrac{5-2\sqrt{3}}{3-\sqrt{3}}\)

\(=\dfrac{\left(2-\sqrt{3}\right)\left(3-\sqrt{3}\right)+5-2\sqrt{3}}{3-\sqrt{3}}\)

\(=\dfrac{6-2\sqrt{3}-3\sqrt{3}+3+5-2\sqrt{3}}{3-\sqrt{3}}\)

\(=\dfrac{14-7\sqrt{3}}{3-\sqrt{3}}\)

d: A=2

=>\(\dfrac{x+\sqrt{x}+2\sqrt{x}+1}{\sqrt{x}+1}=2\)

=>\(x+3\sqrt{x}+1=2\left(\sqrt{x}+1\right)=2\sqrt{x}+2\)

=>\(x+\sqrt{x}-1=0\)

=>\(\left[{}\begin{matrix}\sqrt{x}=\dfrac{-1+\sqrt{5}}{2}\left(nhận\right)\\\sqrt{x}=\dfrac{-1-\sqrt{5}}{2}\left(loại\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{6-2\sqrt{5}}{4}=\dfrac{3-\sqrt{5}}{2}\)


Các câu hỏi tương tự
namdz
Xem chi tiết
namdz
Xem chi tiết
Hoang Minh
Xem chi tiết
Minh Bình
Xem chi tiết
Vương Đình Minh
Xem chi tiết
6.Phạm Minh Châu
Xem chi tiết
Hoang Minh
Xem chi tiết
Sun Trần
Xem chi tiết
Lương Ngọc Anh
Xem chi tiết