Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Quốc Anh

Cho ba số dương  \(0\le a\le b\le c\le1\)

Chứng minh rằng \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)

alibaba nguyễn
22 tháng 1 2017 lúc 5:27

Đặt: \(P=\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\)

Từ đề bài ta có: \(abc\ge0\)

Ta chứng minh: \(\frac{a}{1+bc}\le\frac{2a}{2+abc}\)

\(\Leftrightarrow2a+a^2bc\le2a+2abc\)

\(\Leftrightarrow abc\left(2-a\right)\ge0\)(đúng)

Tương tự ta có:

\(\frac{b}{1+ac}\le\frac{2b}{2+abc}\)

\(\frac{c}{1+ab}\le\frac{2c}{2+abc}\)

\(\Rightarrow P\le\frac{2\left(a+b+c\right)}{2+abc}\)

\(\Rightarrow P-2\le\frac{2\left(a+b+c-2-abc\right)}{2+abc}\)

\(=-\frac{2\left(\left(1-a\right)\left(1-b\right)+\left(1-c\right)\left(1-ab\right)\right)}{2+abc}\)

 \(\le0\)(vì \(0\le a\le b\le c\le1\))

\(\Rightarrow P\le2\)

Vậy \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)

Thắng Nguyễn
23 tháng 1 2017 lúc 12:59

Từ \(\hept{\begin{cases}a\le1\Rightarrow a-1\le0\\b\le1\Rightarrow b-1\le0\end{cases}}\) suy ra \(\left(a-1\right)\left(b-1\right)\ge0\)

\(\Rightarrow ab-a-b+1\ge0\Rightarrow ab+1\ge a+b\Rightarrow2ab+1\ge a+b\left(ab\ge0\right)\)

\(\Rightarrow2ab+2\ge a+b+c\left(1\ge c\right)\)

\(\Rightarrow\frac{1}{2ab+2}\le\frac{1}{a+b+c}\Rightarrow\frac{1}{2\left(ab+1\right)}\le\frac{1}{a+b+c}\Rightarrow\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)

Tương tự ta có: \(\hept{\begin{cases}\frac{a}{bc+1}\le\frac{2a}{a+b+c}\\\frac{b}{ac+1}\le\frac{2b}{a+b+c}\end{cases}}\).Cộng theo vế ta có:

\(VT\le\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)

quá nhiều ý tưởng mà ko ai vào chém à

Phan Thanh Tuấn
23 tháng 1 2017 lúc 15:19

Chứng minh rằng bạn rất rất rất ........................rất ngu

alibaba nguyễn
23 tháng 1 2017 lúc 16:24

Thắng Nguyễn cẩn thận nhé. Cái bất đẳng thức đầu tiên xảy ra khi ab = 0, thứ 2 xảy ra khi bc = 0, thứ 3 xảy ra khi ca = 0

Hay cái bất đẳng thức của you xảy ra khi 

\(\hept{\begin{cases}ab=0\\bc=0\\ca=0\end{cases}}\)

Nói tới đây thì you thấy chỗ sai của mình rồi đúng không 

ngonhuminh
23 tháng 1 2017 lúc 16:53

chuyen gi the chua hieu

ngonhuminh
23 tháng 1 2017 lúc 16:56

Một bài toán có (n+1)! cách giải hiện tại chưa có cánh nào hay hơn. tạm chập nhận cách đó hay nhất

còn bạn C/m sai e rằng bạn đang nhầm

ngonhuminh
23 tháng 1 2017 lúc 17:01

Bài của @Ali nếu thiếu chỉ thiếu mõi cái Đẳng thức xẩy ra khi nào?

Nếu thực sự muốn biết chi cần nhắn tin nếu online khảng định sau 1 phút có đáp án.

Hoàng Phúc
24 tháng 1 2017 lúc 15:48

vậy t có cách này , mn  tham khảo:

Không mất tính TQ,giả sử 0<=a<=b<=c<=1 

Ta có ab+1<=ac+1,ab+1<=bc+1

=>a/bc+1 + b/ca+1 + c/ab+1 <= a/ab+1 + b/ab+1 + c/ab+1

=>a/bc+1 + b/ca+1 + c/ab+1 <= (a+b+c)/(ab+1) (1)

Từ gt ta co1 (1-a)(1-b) >= 0 =>a+b <= ab+1 <= 2ab+1 .mà c<=1 nên a+b+c <= 2ab+1+1=2(ab+1)

=>(a+b+c)/(ab+1) <= 2(ab+1)/ab+1 = 2 (2)

Từ (1),(2) suy ra đpcm

ngonhuminh
25 tháng 1 2017 lúc 14:04

Theo cách làm@hoángphuc CTV mình thấy gọn nhưng chưa biết đẳng thức xẩy ra khi nào??

Ngu Ngu Ngu
5 tháng 4 2017 lúc 18:32

Giải:

Vì \(0\le a\le b\le c\le1\) nên \(ab,bc,ca\ge abc\)

Do đó: \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a+b+c}{abc+1}\)

Vậy ta cần chứng minh: \(\frac{a+b+c}{abc+1}\le2\)

\(\Leftrightarrow2\left(abc+1\right)\ge a+b+c\)

Vì \(a,b,c\le1\) nên \(\hept{\begin{cases}\left(a-1\right)\left(bc-1\right)\ge0\\\left(b-1\right)\left(c-1\right)\ge0\end{cases}}\)

\(\Rightarrow2abc+1\ge abc+1\ge bc+a\)

\(\Rightarrow bc+1\ge b+c\)

Do đó \(2abc+2\ge a+bc+1\ge a+b+c\)

Vậy \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\) (Đpcm)

Dấu "=" xảy ra khi \(\left(a,b,c\right)=\left(0,1,1\right)\)

nguyen ngoc bao an
11 tháng 2 2018 lúc 21:34

toán lớp mấy vậy

Kamado Tanjiro
26 tháng 11 2018 lúc 19:10

quá ngu .tui cũng ko bít

nguyen thanh nam NTN Vlo...
28 tháng 11 2018 lúc 20:23

được lắm ok

Kamado Tanjiro
7 tháng 12 2018 lúc 18:15

like thì vào nhóm tui

tth_new
4 tháng 1 2019 lúc 19:09

Bạn tham khảo bài mình làm tại đây nhé: Câu hỏi của Kaitou Kid(Kid-sama) - Toán lớp 7 - Học toán với OnlineMath

Kiến thức lớp 7 thôi,cần gì nhiều :v. Cảm ơn anh ali đã gợi ý!

nguyễn ánh hằng
19 tháng 1 2019 lúc 20:52

t

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a-b-c}{bc+1-ac+1-ab+1}\)\(\frac{a-b-c}{bc-ac-ab}=\frac{a-b-c}{\left(b-a\right)\times c}\)

Ta có :\(\frac{a-b}{b-a}=\frac{c}{c}=1\)=>\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}>2\)

CHU ANH TUẤN
19 tháng 3 2019 lúc 22:13

có đó bạn,nhiều lắm

Bùi Anh Tú
21 tháng 3 2019 lúc 11:31

go away

ư

乂υƘαツ
3 tháng 4 2019 lúc 14:45

hi

Nguyễn Thiện Nhân
16 tháng 3 2020 lúc 21:10

tfkkfkdjldl56899000000843jcckdfdlkdfck

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Phương Thảo
Xem chi tiết
Đức Trần Hữu
Xem chi tiết
Nguyễn Huy Tú
Xem chi tiết
FFPUBGAOVCFLOL
Xem chi tiết
Anh Lưu Đức
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
Xem chi tiết
Mai Ngọc
Xem chi tiết
Lê Chí Cường
Xem chi tiết
Lê Chí Cường
Xem chi tiết