ĐK:\(\begin{cases}x-2\ge0\\x-1-2\sqrt{x-2}\ge0\\\sqrt{x-2}-1\ne0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge2\\\left(x-2\right)-2\sqrt{x-2}+1\ge0\\\sqrt{x-2}\ne1\end{cases}\)
\(\Leftrightarrow\begin{cases}x\ge2\\\left(\sqrt{x-2}-1\right)^2\ge0\\x-2\ne1\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge2\\\sqrt{x-2}\ge1\\x\ne3\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge2\\x-2\ge1\\x\ne3\end{cases}\)
\(\Leftrightarrow\begin{cases}x\ge2\\x\ge3\\x\ne3\end{cases}\) \(\Leftrightarrow x>3\)
b)\(A=\frac{\sqrt{x-1-2\sqrt{x-2}}}{\sqrt{x-2}-1}\)
\(=\frac{\sqrt{\left(x-2\right)-2\sqrt{x-2}+1}}{\sqrt{x-2}-1}\)
\(=\frac{\sqrt{\left(\sqrt{x-2}-1\right)^2}}{\sqrt{x-2}-1}\)
\(=\frac{\sqrt{x-2}-1}{\sqrt{x-2}-1}=1\)