A=\(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{2+5\sqrt{x}}{x-4}\)
A=\(\frac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{x-4}\)
A=\(\frac{3x-6\sqrt{x}}{x-4}=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{3\sqrt{x}}{\sqrt{x}+2}\)
b)
để A=2 thì
\(\frac{3\sqrt{x}}{\sqrt{x}+2}=2\) => 3\(\sqrt{x}\)=2\(\sqrt{x}+4\)
=>\(\sqrt{x}\)=4
=> x = 16