15.
Cho a, b, c là các số thực dương thỏa mãn \(a+b+c+ab+bc+ac=6\)
Chứng minh rằng: \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge3\)
16.
Xét các số thực a, b, c ( a khác 0) sao cho:
Phương trình bậc hai \(ax^2+bx+c=0\) có hai nghiệm m, n thỏa mãn: \(0\le m\le1;0\le n\le1\).
Tìm giá trị nhỏ nhất của biểu thức: \(Q=\dfrac{2a^2-ac-2ab+bc}{a^2-ab+ac}\)
17.
Cho ba số thực không âm a, b, c và thỏa amnx a+b+c=1.
Chứng minh rằng: \(a+2b+c\ge4\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
18.
Cho ba số thực a, b, c. Chứng minh rằng:
\(\left(a^2-bc\right)^3+\left(b^2-ca\right)^3+\left(c^2-ab\right)^3\ge3\left(a^2-bc\right)\left(b^2-ca\right)\left(c^2-ab\right)\)
Chứng minh rằng nếu các số a,b,c,d thỏa mãn đẳng thức:
\(\left[ab\left(ab-2cd\right)+c^2+d^2\right]\left[ab\left(ab-2\right)+2\left(ab+1\right)\right]=0\)
thì chúng lập thành một tỉ lệ thức
cho a,b,c thỏa mãn:
\(\frac{2b+b-c}{a}=\frac{2c-b+a}{b}=\frac{2a-b-c}{c}\)
Tính \(A=\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
Nhớ giải chi tiết giùm
Cô quản lí Nguyễn Linh Chi nhờ mình làm VD1 trong link: Bất đẳng thức Cauchy ( Cô-si) - Học toán với OnlineMath
Chứng minh:
\(\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge8\left(abc\right)^2\)
Cho \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)CMR:\(\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
Bai tap hoc them cua todo!!!!!!!!!Còn mỗi hai bài,trước hết giúp tớ bài này đi mà!!!!!!!!!!!!!!!!!!!!
Tìm giá trị nhỏ nhất của A: \(\left|x-a\right|+\left|x-b\right|+\left|x-c\right|+\left|x-d\right|\) với \(a
Cho a,b,c là ba số nguyên dương với \(a\le b\le c\) thỏa mãn: \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=3\)
Vậy có bao nhiêu bộ a,b,c thỏa mãn điều kiện trên.
Cho a,b,c là ba số nguyên dương với \(a\le b\le c\) thỏa mãn: \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=3\)
Vậy có bao nhiêu bộ a,b,c thỏa mãn điều kiện trên.