15.
Cho a, b, c là các số thực dương thỏa mãn \(a+b+c+ab+bc+ac=6\)
Chứng minh rằng: \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge3\)
16.
Xét các số thực a, b, c ( a khác 0) sao cho:
Phương trình bậc hai \(ax^2+bx+c=0\) có hai nghiệm m, n thỏa mãn: \(0\le m\le1;0\le n\le1\).
Tìm giá trị nhỏ nhất của biểu thức: \(Q=\dfrac{2a^2-ac-2ab+bc}{a^2-ab+ac}\)
17.
Cho ba số thực không âm a, b, c và thỏa amnx a+b+c=1.
Chứng minh rằng: \(a+2b+c\ge4\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
18.
Cho ba số thực a, b, c. Chứng minh rằng:
\(\left(a^2-bc\right)^3+\left(b^2-ca\right)^3+\left(c^2-ab\right)^3\ge3\left(a^2-bc\right)\left(b^2-ca\right)\left(c^2-ab\right)\)
Cô quản lí Nguyễn Linh Chi nhờ mình làm VD1 trong link: Bất đẳng thức Cauchy ( Cô-si) - Học toán với OnlineMath
Chứng minh:
\(\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge8\left(abc\right)^2\)
rút gọn biểu thức: \(\left(x+a\right)\left(x+b\right)\left(x+c\right)\)
biết rằng : a+b+c=6
ab+bc+ac=-7
abc=-60
Cho đa thức h(x) thoả mãn \(x.h\left(x+1\right)=\left(x+2\right).h\left(x\right)\). Chứng minh rằng đa thức h(x) có ít nhất hai nghiệm
Cho \(\frac{a}{b}=\frac{c}{d}\) CMR:a,\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)
b,\(\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
c,\(\frac{7a^2+5ac}{7a^2-5ac}=\frac{7b^2+5ad}{7b^2-5ad}\)
Help me!!!!!!!!!!!!!!!!!!!!!!!!!!!!Buổi tối đi học òi!!!!!!!!!!!!!!!!!!!
số giá trị của x thỏa mãn \(\frac{\left|4-x\right|+\left|x+2\right|}{\left|x+5\right|+\left|x-3\right|}=-\frac{1}{2}\) là
cho a,b,c>0 và a+b+c=1. tìm GTNN của : \(M=\frac{1}{1-2\left(ab+bc+ca\right)}+\frac{1}{abc}\)
Tìm các số nguyên x; y thỏa mãn:
\(\left|x-2\right|.y+\left|x-2\right|-17=0\)
Cho \(A=\left(n-1\right)\left(n+1\right).n^2.\left(n^2+1\right)\)
Chứng minh rằng: \(A \vdots 3\)