Cho a,b,c là ba số nguyên dương với \(a\le b\le c\) thỏa mãn: \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=3\)
Vậy có bao nhiêu bộ a,b,c thỏa mãn điều kiện trên.
Cho \(x,y,z\) là ba số thỏa mãn: \(x^3+y^3+z^3=3xyz\) và \(x+y+z\ne0\) .
Vậy giá trị biểu thức \(P=\frac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) là P=........
Trong số các số phức z thỏa mãn điều kiện |z-4+3i|=3, gọi z 0 là số phức có mô đun lớn nhất. Khi đó | z 0 | là:
A. 3
B. 4
C. 5
D. 8
Ngoài số n=0, còn có bao nhiêu số tự nhiên n thỏa mãn điều kiện \(2^n+15\) là số chính phương?(Toán 8 nha)
15.
Cho a, b, c là các số thực dương thỏa mãn \(a+b+c+ab+bc+ac=6\)
Chứng minh rằng: \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge3\)
16.
Xét các số thực a, b, c ( a khác 0) sao cho:
Phương trình bậc hai \(ax^2+bx+c=0\) có hai nghiệm m, n thỏa mãn: \(0\le m\le1;0\le n\le1\).
Tìm giá trị nhỏ nhất của biểu thức: \(Q=\dfrac{2a^2-ac-2ab+bc}{a^2-ab+ac}\)
17.
Cho ba số thực không âm a, b, c và thỏa amnx a+b+c=1.
Chứng minh rằng: \(a+2b+c\ge4\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
18.
Cho ba số thực a, b, c. Chứng minh rằng:
\(\left(a^2-bc\right)^3+\left(b^2-ca\right)^3+\left(c^2-ab\right)^3\ge3\left(a^2-bc\right)\left(b^2-ca\right)\left(c^2-ab\right)\)
Cho
\(\frac{A+C+E}{3}=40--\left(1\right)\)
\(\frac{A+B+D}{3}=28--\left(2\right)\)
\(\frac{B+C+D+E}{3}=33--\left(3\right)\)
\(A=?\)
Tính giá trị biểu thức sau:
A = \(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2014.2016}\right)\).
cho a,b,c thỏa mãn:
\(\frac{2b+b-c}{a}=\frac{2c-b+a}{b}=\frac{2a-b-c}{c}\)
Tính \(A=\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
Nhớ giải chi tiết giùm
\(C=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
NHỚ TRÌNH BÀY RA GIÙM MINK