\(A=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\ge\dfrac{4}{a^2+2ab+b^2}=\dfrac{4}{\left(a+b\right)^2}=4\)
dấu"=" xảy ra<=>\(a=b=\dfrac{1}{2}\)
\(A=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\ge\dfrac{4}{a^2+2ab+b^2}=\dfrac{4}{\left(a+b\right)^2}=4\)
dấu"=" xảy ra<=>\(a=b=\dfrac{1}{2}\)
cho a,b là các số thực dương thỏa mãn a+b =<1.Tìm gtnn của A=1/(a^2+b^2)+1/2ab
cho a,b,c là các số dương thoả mãn ab+bc+ac=1
Tìm GTNN\(P=\dfrac{\sqrt{a^2+1}.\sqrt{b^2+1}}{\sqrt{c^2+1}}+\dfrac{\sqrt{b^2+1}.\sqrt{c^2+1}}{\sqrt{a^2+1}}+\dfrac{\sqrt{c^2+1}.\sqrt{a^2+1}}{\sqrt{b^2+1}}\)
Cho x,y là các số thực dương bất kì thoả mãn điều kiệu x+y=1
Tìm GTNN của biểu thức A=2X*2-y*2+x+1\x+1
Cho a,b là các soos thưc dương thỏa \(a+b\le1\). Tìm GTNN
\(A=\frac{1}{1+a^2+b^2}+\frac{1}{2ab}\)
Cho hai số thực dương a,b thỏa mãn \(a^2+b^2=1\)
Tìm GTNN và GTLN của biểu thức \(A=\frac{3a^2+3b^2+14ab}{1+2ab+2b^2}\)
Cho a,b là các số dương thỏa mãn a+b+2ab=12
tính GTNN của A=\(\frac{a^2+ab}{a+2b}+\frac{b^2+ab}{2a+b}\)
Cho a, b là các số dương thỏa mãn a + b + 2ab = 12. Tìm GTNN của biểu thức A = a + b.
Cho a, b là các số dương thỏa mãn a + b + 2ab = 12. Tìm GTNN của biểu thức A = a + b.
Cho các số thực dương a,b,c thỏa mãn a + b + c = 1
Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{9}{\left(ab+bc+ca\right)}+\dfrac{2}{a^2+b^2+c^2}.\)