Lời giải:
Đặt $\sqrt{3ab+4}=t(t>\sqrt{7})$ thì $ab=\frac{t^2-4}{3}$
Bài toán trở thành:
Cho $t>\sqrt{7}$. CMR: $\frac{18}{t^2-4}+t\geq \frac{11}{2}(*)$
Thật vậy:
\((*)\Leftrightarrow \frac{t^3-4t+18}{t^2-4}\geq \frac{11}{2}\)
\(\Leftrightarrow 2t^3-8t+36\geq 11t^2-44\)
\(\Leftrightarrow 2t^3-11t^2-8t+80\geq 0\)
\(\Leftrightarrow (2t+5)(t-4)^2\geq 0\) (luôn đúng với mọi $t>\sqrt{7}$)
Do đó ta có đpcm.
Dấu "=" xảy ra khi $t=4\Leftrightarrow ab=4$