Cho hình vuông ABCD . E là điểm di chuyển trên cạnh BC . Đường thẳng AE cắt đường thẳng DC tại F . Qua A vẽ đường thẳng vuông góc với AE cắt đường thằng CD tại KC
a, Chứng minh tam giác KAE cân
b, Chứng minh \(\frac{1}{AE^2}+\frac{1}{\text{AF}^2}\) có giá trị không đổi
Cho hình vuông ABCD, có độ dài cạnh bằng a. E là một điểm di chuyển trên cạnh CD( E khác C,D).Đường thẳng AE cắt đường thẳng BC tại F, đường thẳng vuông góc với AE tại A cắt đường thẳng CD tại K.
a, CMR: \(cosAKE=sinEKF.cosEFK+sinEFK.cosEKF\)
Cho hình vuong ABCD. Gọi I là một điểm nằm giữa A và B. Tia DI và tia Cb cắt nhau ở K. Kẻ đường thẳng qua D, vuông góc với DI. Đường thằng này cắt đường thẳng BC tại L. Chứng minh rằng:
a) Tam giác DIL là một tam giác cân
b) Tổng \(\frac{1}{DI^2}+\frac{1}{DK^2}\) không đổi khi I thay đổi trên AB
Đây là bài 9(SGK-70) lớp 9 nha! Các bn giúp mk!
Cho tam giác ABC vuông ở A , đường cao AH , BC= 100 , AH =48
a, Tính AB , AC
b, Từ B vẽ tia BX sao cho góc ABx = góc ACB . BX cắt AC tại D
Chứng Minh\(\frac{1}{AB^2}=\frac{1}{BD^2}+\frac{1}{BC^2}\)
cho hình vuông ABCD. Trên tia BC, lấy M nằm ngoài đoạn thẳng BC và trên tia CD lấy N so cho DN=BM. Đường vuông góc với MA tại M và đường vuông góc với NA tại N cắt nhau tại F. CMR: CF vuông góc CA
cho ▲ABC đều. gọi M là trung điểm BC. kẻ tia Mx cắt AB tại E sao cho góc BME=75o. kẻ tia My cắt AC tại F sao cho góc EMF=60o, biết AE+AF=4,5.
1, CM: 4.EB.FC=BC2
2, tính số đo các cạnh và các góc của ▲AEF
Cho tam giác ABC vuông tại C, đường cao CH, O là trung điểm của AB. Đường thẳng vuông góc với CO tại C cắt AB tại D và cắt các tiếp tuyến Ax, By của (O;OC) lần lượt tại E,F.
a) Chứng minh EF là tiếp tuyến của (O;OC) từ đó suy ra AE + BF = EF
b) Khi AC = \(\frac{1}{2}AB\) = R, tính diện tích tam giác BDF theo R.
Cho tam giác ABC vuông tại A (AB < AC).Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC.
a) Chứng minh : BC = DE.
b) Chứng minh : tam giác ABD vuông cân và BD // CE.
c) Kẻ đường cao AH của tam giác ABC tia AH cắt cạnh DE tại M. từ A kẻ đường vuông góc CM tại K, đường thẳng này cắt BC tại N . Chứng minh : NM // AB.
d) Chứng minh : AM = DE/2.
Cho hình vuông ABCD có 2 đường chéo cắt nhau tại O. kẻ d1 đi qua O cắt AB, CD tại E, G sao cho góc EOB=30o . kẻ d2 vuông góc với d1 tại O và cắt BC và AD tại F và H.
a, CM: EFGH là hình vuông
b, nếu AB=\(2\left(\sqrt{3}+1\right)\). Tính diện tích hình vuông