Cho mình xin lời giải cho bài này đc k??
Cho mình xin lời giải cho bài này đc k??
Cho tam giác ABC vuông tại A (AB < AC).Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC.
a) Chứng minh : BC = DE.
b) Chứng minh : tam giác ABD vuông cân và BD // CE.
c) Kẻ đường cao AH của tam giác ABC tia AH cắt cạnh DE tại M. từ A kẻ đường vuông góc CM tại K, đường thẳng này cắt BC tại N . Chứng minh : NM // AB.
d) Chứng minh : AM = DE/2.
BT1: Cho tam giác ABC ( AB< AC) nội tiếp đường tròn tâm O . Ba đường cao AH, BE, CF cắt nhau tại I. Kẻ đường kính AD của đường tròn O, gọi M là trung điểm BC.
a/ Chứng minh: 4 điểm B, F, E, C cùng nằm trên một đường tròn
b/ Chứng minh : EF < BC
c/ Tứ giác BICD là hình gì ? Vì sao ?
d/ Chứng minh : OM = AI / 2
BT2: Cho đường tròn tâm O, điểm A nằm ngoài đường tròn. Từ A vẽ hai đường thẳng cắt đường tròn, đường thứ nhất cắt đường tròn tại M và N ( M nằm giữa A và N ), đường thứ 2 cắt đường tròn tại E và F ( E nằm giữa A và F ) sao cho MN = EF. Kẻ OH vuông góc MN, OK vuông góc EF.
a/ So sánh AH và AK
b/ Chứng minh : AM = AE
c/ Tứ giác MEFN là hình gì ? Vì sao ?
Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BA=BD. Từ D kẻ đường thẳng vuông góc với BC, cắt AC tại E.
a) Cho AB=5cm, AC=7cm, tính BC?
b) Chứng minh tam giác ABE=tam giác DBE?
c) Gọi F là giao điểm của DE và BA, chứng minh EF=EC
d) Chứng minh BE là trung trực của đoạn thẳng AD
cho hình vuông ABCD, có cạnh bằng a.
a, M là điểm trên AD sao cho góc ABM=30. tính AM, BM theo a.
b, qua A kẻ vuông góc với BM tại F, cắt CD tại N. tính AF, MF, BF theo a.
Cho hình vuông ABCD có 2 đường chéo cắt nhau tại O. kẻ d1 đi qua O cắt AB, CD tại E, G sao cho góc EOB=30o . kẻ d2 vuông góc với d1 tại O và cắt BC và AD tại F và H.
a, CM: EFGH là hình vuông
b, nếu AB=\(2\left(\sqrt{3}+1\right)\). Tính diện tích hình vuông
cho tam giác ABC vuông ở A, đường cao AH chia cạnh huyền BC thành 2 đoạn có độ dài BH=4cm, CH=9cm. D, E là hình chiếu của H trên AB, AC.
a, tính DE
b, các đường vuông góc với DE tại D và E cắt BC tại M và N .CM: M là trung điểm BH, N là trung điểm CH
c, tính diện tính tứ giác DENM
Cho hình thoi ABCD có góc A = 120 độ. Tia Ax tạo với tia AB góc BAx =15 độ và cắt cạnh BC tại E, cắt đường thẳng CD tại F.
Chứng minh: \(\frac{1}{AE^2}+\frac{1}{ÀF^2}=\frac{4}{3AB^2}\)
Cho (O,R) đường kính AB . Gọi C là điểm thuộc đường tròn (O) sao cho AC>BC
a, Chứng minh tam giác ABC vuông
b, Tiếp tuyến tại A và C của (O) cắt nhau tại D. Chứng minh OD vuông góc AC
c, Gọi H là giao điểm OD và AC . CHứng minh 4HO.HD= \(AC^2\)
d, Qua O vẽ đường thẳng vuông góc với BD tại K cắt tia AC taik M
Chứng minh MB là tiếp tuyến của đường tròn (O)